PROGRAMMABLE AC POWER SOURCE
DP Series
Instruction Manual (Remote Control)
NF Corporation
PROGRAMMABLE AC POWER SOURCE

DP Series

Instruction Manual (Remote Control)
Preface

This instruction manual explains the remote interfaces of the Programmable AC Power Source DP Series. For operations from the panel, see the instruction manual of the main unit.

The remote interface allows you to use not only the basic DP Series features (e.g., power source control and measurement function), but also its extensive features (e.g., sequence output and simulation execution control) that cover various details of user needs.

- This manual consists of the following chapters.

 When you use this product for the first time, start with "1. Preparation before Use."

1. Preparation before Use
 Explains the setting of the remote interface.

2. Status System
 Explains the content of service requests (SRQ) and status bytes.

3. Remote Command Overview
 Explains the remote command formats accepted by the DP Series.

4. Remote Command Reference
 Includes the list of DP Series remote commands and descriptions for each command.

5. Programming Sample
 Explains the programming samples for remote-controlling the DP Series.

6. Error Message List
 Includes the list of error messages replied by the DP Series in response to remote commands.

7. Specifications
 Includes the specifications of the remote interface.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>1. Preparation before Use</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>2</td>
</tr>
<tr>
<td>1.2 USB Preparation</td>
<td>4</td>
</tr>
<tr>
<td>1.3 RS232 Preparation</td>
<td>7</td>
</tr>
<tr>
<td>1.4 GPIB Preparation</td>
<td>10</td>
</tr>
<tr>
<td>1.5 About Remote and Local</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1 Remote State</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2 Local State</td>
<td>13</td>
</tr>
<tr>
<td>1.6 Considerations</td>
<td>14</td>
</tr>
<tr>
<td>1.6.1 Considerations Common to the Interfaces</td>
<td>14</td>
</tr>
<tr>
<td>1.6.2 USB Interface</td>
<td>15</td>
</tr>
<tr>
<td>1.6.3 RS232 Interface</td>
<td>15</td>
</tr>
<tr>
<td>1.6.4 GPIB Interface</td>
<td>16</td>
</tr>
<tr>
<td>2. Status System</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Service Request</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Status Byte</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1 Status Byte Register and Service Request</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2 Status Byte Register</td>
<td>20</td>
</tr>
<tr>
<td>2.2.3 Service Request Enable Register</td>
<td>21</td>
</tr>
<tr>
<td>2.2.4 Standard Event Status Register Group</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5 Operation Status Register Group</td>
<td>22</td>
</tr>
<tr>
<td>2.2.6 System Lock Condition Register Group</td>
<td>27</td>
</tr>
<tr>
<td>3. Remote Command Overview</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Remote Command</td>
<td>30</td>
</tr>
<tr>
<td>3.1.1 Command Type and Format Concept</td>
<td>30</td>
</tr>
<tr>
<td>3.1.2 About SCPI</td>
<td>30</td>
</tr>
<tr>
<td>3.1.3 Supported Common Command</td>
<td>31</td>
</tr>
<tr>
<td>3.1.4 SCPI Command and Query Format</td>
<td>32</td>
</tr>
<tr>
<td>3.1.5 SCPI Subsystem Command Tree</td>
<td>32</td>
</tr>
<tr>
<td>3.1.6 Elements of SCPI Commands</td>
<td>35</td>
</tr>
<tr>
<td>3.1.7 Overview of Response Message Formats</td>
<td>42</td>
</tr>
<tr>
<td>4. Remote Command Reference</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Program Command List</td>
<td>48</td>
</tr>
<tr>
<td>4.1.1 List of Commands Common to Functions</td>
<td>49</td>
</tr>
</tbody>
</table>
Figures and Tables

List of Figures

<p>| Figure 2.1 | Status Byte Register and Service Request Enable Register | Page 19 |
| Figure 2.2 | Standard Event Status Register Group | 21 |
| Figure 2.3 | Operation Status Register Group | 22 |
| Figure 2.4 | Warning Condition Register Group | 25 |
| Figure 2.5 | System Lock Condition Register Group | 27 |
| Figure 3.1 | Example of Command Tree | 32 |
| Figure 3.2 | Common Command Syntax | 35 |
| Figure 3.3 | SP Syntax | 35 |
| Figure 3.4 | Subsystem Command Syntax | 35 |
| Figure 3.5 | Numeric Parameter (<REAL>, <INT>) Syntax | 37 |
| Figure 3.6 | Mantissa Syntax | 38 |
| Figure 3.7 | Index Syntax | 38 |
| Figure 3.8 | Discrete Parameter (<DISC>) Syntax | 38 |
| Figure 3.9 | Boolean Value Parameter (<BOL>) Syntax | 39 |
| Figure 3.10 | String Parameter (<STR>) Syntax | 39 |
| Figure 3.11 | Block Program Data (<BLK>) Syntax | 40 |
| Figure 3.12 | Suffix Syntax | 40 |
| Figure 3.13 | Program Message Syntax | 41 |
| Figure 3.14 | Response Message Syntax | 42 |
| Figure 3.15 | Real Number Response Data (<REAL>) Syntax | 42 |
| Figure 3.16 | NR2 Number Response Data (<NR2>) Syntax | 43 |
| Figure 3.17 | NR3 Number Response Data (<NR3>) Syntax | 43 |
| Figure 3.18 | Integer Response Data (<INT>) Syntax | 43 |
| Figure 3.19 | Discrete Response Data (<DISC>) Syntax | 44 |
| Figure 3.20 | Numeric Boolean Value Response Data (<NBOL>) Syntax | 44 |
| Figure 3.21 | String Response Data (<STR>) Syntax | 44 |
| Figure 3.22 | Definite Length Arbitrary Block Response Data Syntax (<DBLK>) | 45 |
| Figure 3.23 | Indefinite Length Arbitrary Block Response Data Syntax (<IBLK>) | 45 |
| Figure 7.1 | Multi-Line Interface Message | 236 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Status Byte Register</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Standard Event Status Register</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Operation Status Register</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Transition Filter and Event Register Transitions</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Warning Condition Register</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>System Lock Condition Register</td>
<td>28</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>IEEE488.2 Common Commands Supported by DP Series</td>
<td>31</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Acceptable and Unacceptable Keywords (for "OUTPut")</td>
<td>36</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Error Message List</td>
<td>230</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Interface Functions</td>
<td>234</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Bus Driver Specifications</td>
<td>234</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Response to Interface Message</td>
<td>235</td>
</tr>
</tbody>
</table>
1. Preparation before Use

1.1 Overview ... 2
1.2 USB Preparation ... 4
1.3 RS232 Preparation ... 7
1.4 GPIB Preparation .. 10
1.5 About Remote and Local 13
1.6 Considerations .. 14
1.1 Overview

The DP Series supports following three types of remote interfaces:

- USB (USB Test and Measurement Class USB488 Subclass, abbreviated to USBTMC hereinafter)
- RS232
- GPIB (available when the optional feature is included)

The DP Series is provided with the USB, RS232, and GPIB (optional) remote interfaces and is remote-controllable by a computer or other instruments. By sending remote commands for each function and receiving the data, you can control the function execution and read the internal state such as setting values and error statuses.

Regardless of which communication interface is used, you can create and use a program that uses the Virtual Instrument Software Architecture (VISA) library. If you do not have a license to use VISA library, you need to obtain one (generally, it requires some cost).

Irrespective of differences in interface, each function can be used with the same command from the remote interface. However, some functions are not available in the RS232 and GPIB due to interface-specific restrictions.

[Restrictions in RS232 and GPIB]

- Status and register acquisition method
 Serial poll-based status register acquisition is not available.
 For details, see 2.2.

- Handling of termination symbol at command send/receive
 The RS232 always requires a termination symbol.

- Binary data handling
 Arbitrary waveform data in binary data cannot be sent.

- Remote/Local state transition condition
 The RS232 cannot perform the state transition from Remote to Local using the remote command. Only the panel operation can change the state to Local.
Command control specification: IEEE Std. 488.2-1992 compatible
 (Some commands are omitted or extended depending on the interface.)

Command format specification: compliant with the SCPI Specification 1990.0 command system
1.2 USB Preparation

USB interface (USB1.1, USBTMC)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Already assigned for each device</td>
</tr>
<tr>
<td>Terminator</td>
<td>“LF”</td>
</tr>
</tbody>
</table>

The computer used for control needs a USBTMC class driver installed on it. The USBTMC class driver is included in the hardware and software product of each company that provides the VISA library.

- Operation procedure
 1. Press the MENU key to move to the root menu, then select [System]. The system setting window opens.
2. Put the cursor on [Setup] next to the [Remote] item, then press the ENTER key. The remote setting window opens.

3. In the [Interface] item, select [USB].
4. The window shows [Terminator] and [USB ID]. For the USB ID, see the explanation in the next section. Select [Close] to close the window.

5. Use a commercially available USB cable (Type A to B) to connect this product to the computer. USB connector is available on the rear of this product.

--- Notes ---
• Avoid use in a place that has power fluctuation or under electrically noisy environment.
• It is recommended to use a fully-shielded, short cable.
• The use of USB hub may cause the product not to communicate properly.

About USB ID
Used for a system connected with multiple DP Series through USB, to enable the application identify each source. The USB ID is represented in the following format.

USB0::0x0D4A:0x001A::0000067::INSTR

Vendor number: Fixed to 3402 (0x0D4A)
Product number: Fixed to 26 (0x001A)
Serial number: A unique number (serial number) has been set for each product.
1.3 RS232 Preparation

RS232 interface

<table>
<thead>
<tr>
<th>Item</th>
<th>Description or Selection</th>
<th>Factory default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal</td>
<td>D-sub 9-pin (male)</td>
<td></td>
</tr>
<tr>
<td>Baud rate</td>
<td>9600 / 19200</td>
<td>9600bps</td>
</tr>
<tr>
<td>Parity</td>
<td>None/Odd/Even</td>
<td>None</td>
</tr>
<tr>
<td>Stop bit</td>
<td>1 / 2</td>
<td>1 bit</td>
</tr>
<tr>
<td>Data bit</td>
<td>7 / 8</td>
<td>8 bit</td>
</tr>
<tr>
<td>Flow control</td>
<td>None/Hardware/Software</td>
<td>None</td>
</tr>
</tbody>
</table>

Note: Binary transmission is not supported.

Remote command based arbitrary waveform transmission is not available.

Note: Use a cross cable.

Operation procedure

1. Press the MENU key to move to the root menu, then select [System]. The system setting window opens.
2. Put the cursor on [Setup] next to the [Remote] item, then press the ENTER key. The remote setting window opens.

3. In the [Interface] item, select [RS232].
4. Set each item.

<table>
<thead>
<tr>
<th>System</th>
<th>100V</th>
<th>AC-INT</th>
<th>IP20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Reset** | Exec | Remote | Setup |
- **PwIn Mode** | Cont | Relay Ctrl | Enable |
- **PwOut Ctrl** | OFF | USB Ctrl | Enable |

<table>
<thead>
<tr>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>Baud Rate</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>Stop bit</td>
</tr>
<tr>
<td>Flow Control</td>
</tr>
</tbody>
</table>

5. Use a D-sub 9-pin cross cable to connect this product to the computer. RS232 connector is available on the rear of this product.

--- Notes ---

- Avoid use in a place that has power fluctuation or under electrically noisy environment.
- It is recommended to use a fully-shielded, short cable.

--
1.4 GPIB Preparation

GPIB interface (optional, IEEE488.1 std 1987 compliant)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description or Selection</th>
<th>Factory default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>0 to 30</td>
<td>2</td>
</tr>
<tr>
<td>Terminator</td>
<td>“LF”</td>
<td></td>
</tr>
</tbody>
</table>

Note: Binary transmission is not supported.
Remote command based arbitrary waveform transmission is not available.
Note: Query for the main unit status byte using a serial poll is not supported.

Mount a GPIB controller board (card) to the controlling computer, then connect between them using a commercially-available GPIB cable. For details, see the instruction manual of your GPIB controller board (card).

- Operation procedure

1. Press the MENU key to move to the root menu, then select [System]. The system setting window opens.
2. Put the cursor on [Setup] next to the [Remote] item, then press the ENTER key. The remote setting window opens.

```
<table>
<thead>
<tr>
<th>System</th>
<th>100V</th>
<th>AC-INT</th>
<th>1P2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Reset: Exec | Remote: Setup
- PwOn Mode: Cont | Relay Ctrl: Enable
- PwON Output: OFF | USB Eject: Exec
- Beep: ON | Trig Out: Setup
- LCD: Setup | PU-ON: Setup
- Monitor: Setup | Information: View
- Ext Control: Disable | ExtOut Pol: Positive

3. In the [Interface] item, select [GPIB].

```
<table>
<thead>
<tr>
<th>System</th>
<th>100V</th>
<th>AC-INT</th>
<th>1P2M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Remote: USB
- Interface: USB
- Terminator: 1:USB
- USB ID: 2:RS232
- USB0::0:3:GPIB

OK
4. In the [Address] item, set the address. [Terminator] is fixed to "LF".

5. Use a GPIB cable to connect this product to the computer. GPIB connector is available on the rear of this product. Turn off this product and the computer before connecting or disconnecting the cable.

--- Notes ---

- Avoid use in a place that has power fluctuation or under electrically noisy environment.
- Before connecting or disconnecting the connector, turn off the power to all devices on the bus.
- When using the GPIB, turn on the power to all devices on the bus.
- Ensure that the total cable length is within 20 meters.
- Ensure that the length of one cable is within 4 meters.
- Do not set the same address as the one used for any other device connected to the same bus. Otherwise, the product cannot communicate properly.
1.5 About Remote and Local

1.5.1 Remote State

In the Remote state, the control panel key operations are not accepted. However, the output off (OUTPUT key) and the switching to the Local state (SHIFT + 0) are available.

- Switching to the Remote state
 When communication is established after the command is sent from the computer to the product, the DP Series switches to the Remote state.

1.5.2 Local State

Control panel key operations are accepted.

- Switching to the Local state
 The Shortcut operation (SHIFT + 0) switches the state to Local.

The Remote state is cleared when the LOCAL key is pressed in the Remote state, when the GPIB bus REN line is set to False (High) from the computer, or when the GTL command is received. However, the LOCAL key is disabled when the DP Series is in the local lockout state. To clear the local lockout status, you need to set the GPIB bus REN line to False (High) on the computer.
1.6 Considerations

1.6.1 Considerations Common to the Interfaces

- The input buffer size is 2048 bytes.
 The DP Series interprets and executes the commands sequentially as it stores received commands to the input buffer. It can also handle a data of more than the size of the input buffer, where the data includes one statement which consists of multiple commands concatenated together and is terminated with the message terminator (delimiter symbol or EOI). However, the input buffer becomes full if the communication data volume is too large compared to the speed of command interpretation and execution. In that case, the computer cannot send any command, and therefore results in transmission timeout.

 Note that the transmission timeout does not occur if the communication is taking place with the RS232 flow control set to None. However, other error occurs such as command execution error because the command sent from the computer is not received correctly by the DP Series.

 If there is an error during interpretation or execution of any one of the multiple commands that are concatenated and sent to the DP Series, any commands after that command up to the message terminator are discarded; not interpreted or executed.

- The output buffer size is 2048 bytes.
 The output buffer is cleared if the size of the response data in reply to the query command from the computer exceeds the output buffer size. At this time, the DP Series sets the query error bit of the standard event status register to 1.

 During the processing of data that includes multiple commands concatenated up to the message terminator (delimiter symbol or EOI) in one statement, if the size of the response data exceeds the output buffer size, the command parsing and execution is continued while the excess response data does not remain in the output buffer.

- The maximum number of errors that can be queued is 16.
 Every time a command parsing and execution error occurs, the error message is queued in the error queue. If command errors occur beyond the maximum queuing number of errors, the error message stored in the 16th queue is replaced with -350,”Queue overflow.”

- The USB, RS232, and GPIB interfaces are expected to be used under a relatively stable environment. Avoid using in a place that has power fluctuation or environment with much electrical noise.
--- Restrictions --

• Do not insert or remove a USB memory while the main unit is performing the remote communication. This may damage the USB memory or cause the main unit to malfunction. Insert or remove a USB memory after terminating the remote command based auto-execution program and similar activities.

1.6.2 USB Interface

• To use a USB interface, USBTMC device driver software needs to be installed on your computer.

• Not that not all USBTMC device driver software pieces provided by every company have been tested for operation verification.

 Operation verification was performed on our USBTMC compatible device driver software (dedicated to the attached application) and the USBTMC device driver software that comes with NI-VISA provided by National Instruments.

1.6.3 RS232 Interface

• One RS232 port cannot have multiple devices connected at one time.

• When communication is taking place with no flow control, the command may not be executed properly. Use the flow control whenever possible.

• For communication that has the hardware flow control enabled, use a cable in which the RTS signal and CTS signal lines are interlink-connected. Use the one that RTS on the computer side is connected to CTS on the DP Series, CTS to RTS.

• To avoid malfunctioning due to radiated electromagnetic noise, ensure to use a shielded cable.
1.6.4 GPIB Interface

• Power off all devices on the bus when you connect or disconnect the GPIB cable.

• When using the GPIB, turn on the power to all devices connected to the bus.

• Up to 15 devices (including the controller) can be connected to the GPIB in one system. The cable length has the following limitations.
 • Total cable length is 2 meters x (number of devices) or 20 meters, whichever the shorter
 • Length of a cable is 4 meters or less

• Check carefully for the GPIB address before setting it. Using a duplicated address in one system may damage devices.

• Inconsistency of the delimiter settings in the system might cause unexpected trouble. Use the same delimiter setting for every device that exists in the system.
2. Status System

2.1 Service Request .. 18
2.2 Status Byte .. 19
2.1 Service Request

The USB interface supports the service request functions offered by USBTMC. You can obtain the status of the DP series product by performing a serial poll (reading status byte) from your computer, under the conditions shown below. The serial poll allows you to obtain the status of the DP series product regardless of the Remote/Local state.

• When the output data for query is prepared
• When some error or warning occurs

The GPIB interface does not support the service request through the SRQ signal line of the bus.
2.2 Status Byte

The status byte can be obtained by a serial poll only when using a USB interface. When using a RS232 or GPIB interface, the status byte cannot be obtained by a serial poll.

2.2.1 Status Byte Register and Service Request

The configuration of the status byte register and the service request enable register is shown in Figure 2.1.
2.2.2 Status Byte Register

Each bit of the status byte register is described in Table 2.1.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Symbol</th>
<th>Description</th>
<th>Set Condition (set to 1)</th>
<th>Clear Condition (set to 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MSB) 7</td>
<td>128</td>
<td>OPR</td>
<td>Operation condition register summary</td>
<td>This bit is set when the logical OR of bits of the operation event register is 1.</td>
<td>This bit is cleared when the logical OR of bits of the operation event register is 0.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>RQS/MSS</td>
<td>Request service/master summary status</td>
<td>Note 3</td>
<td>Note 1</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>ESB</td>
<td>Standard Event Status Register Summary</td>
<td>This bit is set when the logical OR of bits of the standard event status register is 1.</td>
<td>This bit is cleared when the logical OR of bits of the standard event status register is 0.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>MAV</td>
<td>This bit notifies that the output data for the query is prepared.</td>
<td>This bit is set when the output data for the query is prepared.</td>
<td>This bit is cleared when there is no output data for the query. Note 4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Unused</td>
<td>Unused</td>
<td>Note 2</td>
<td>Note 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>WAR</td>
<td>Warning condition register summary</td>
<td>This bit is set when the logical OR of bits of the warning event register is 1.</td>
<td>This bit is cleared when the logical OR of bits of the warning event register is 0.</td>
</tr>
<tr>
<td>(LSB) 0</td>
<td>1</td>
<td>SLK</td>
<td>System Lock condition register summary</td>
<td>This bit is set when the logical OR of bits of the System Lock event register is 1.</td>
<td>This bit is cleared when the logical OR of bits of the System Lock event register is 0.</td>
</tr>
</tbody>
</table>

Note 1: • When a device clear (DCL or SDC) is received.
 • After reading the status byte (reading the status byte by a serial poll during the SRQ output or a query message).

Note 2: • Always 0 because this bit is not used.

Note 3: • In case of reading by a serial poll, this bit is set when the SRQ is sent.
 • In case of reading by a query message, this bit is set if the logical OR of bits of the status byte is 1.

Note 4: • When a device clear (DCL or SDC) is received.
 • USB: After reading the status byte by using a query message.
 When using USB, this bit is not cleared by a serial poll.

The status byte register is cleared when a *CLS command is received.
2.2.3 Service Request Enable Register

The service request enable register is used to select the summary bit within the status byte register that generates service requests shown in Figure 2.1.

2.2.4 Standard Event Status Register Group

The configuration of the standard event status register group is shown in Figure 2.2.

![Figure 2.2 Standard Event Status Register Group](image)

2.2.4.1 Standard Event Status Register

Each bit of the standard event status register is described in Table 2.2.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>PON</td>
<td>Power on</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>URQ</td>
<td>User request</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>CME</td>
<td>Command error</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>EXE</td>
<td>Execution error</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>DDE</td>
<td>Equipment-specific error (always 0 in the DP series)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>QYE</td>
<td>Query error</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>RQC</td>
<td>Request control</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>OPC</td>
<td>Operation completion</td>
</tr>
</tbody>
</table>

The standard event status register is cleared when the *ESR? query or *CLS command is received.
2.2.4.2 Standard Event Status Enable Register
The standard event status enable register is used to select the bit of the standard event status register as shown in Figure 2.2, and reflect the status of the selected bit to the ESB of the status byte register.

2.2.5 Operation Status Register Group
The configuration of operation status register group is shown in Figure 2.3.

![Figure 2.3 Operation Status Register Group](image-url)
2.2.5.1 Operation Status Condition Register

The operation status condition register is a register that represents the current status of the device. This register is not cleared even when a query addressed to the condition register is received. Each bit of operation status register group is described in Table 2.3.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-</td>
<td>Always 0</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Sequence or Simulation is in the Run status</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Sequence is in the Hold status</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>LOCK status (SYNC status)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>(Unused)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Busy status</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>(Unused)</td>
</tr>
</tbody>
</table>
2.2.5.2 Operation Status Transition Filter
The operation status transition filter is a filter for determining the event bit transition. The operation status transition filter is not cleared even when the *CLS command is received. The relationship between the transition filter setting and the event register transitions is shown in Table 2.4.

<table>
<thead>
<tr>
<th>Each Bit Setting of Positive Transition Filter</th>
<th>Each Bit Setting of Negative Transition Filter</th>
<th>Transition of Condition Register to Set the Bit of Event Register to 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Not changed</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 \rightarrow 0 (detects the falling)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 \rightarrow 1 (detects the rising)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 \rightarrow 1 or 1 \rightarrow 0</td>
</tr>
</tbody>
</table>

2.2.5.3 Operation Status Event Register
The operation status event register is a register that reflects the changes of the condition register according to the transition filter setting. The event register is cleared upon reception of a query addressed to the event register or the *CLS command.

2.2.5.4 Operation Status Event Enable Register
The operation status event enable register is used to select bits in the event register to be summarized.
2.2.5.5 Warning Condition Register Group

The configuration of the warning condition register group is shown in Figure 2.4.

![Figure 2.4 Warning Condition Register Group](image)

Figure 2.4 Warning Condition Register Group
2.2.5.6 Warning Condition Register

This register is not cleared even when a query addressed to the condition register is received. Each bit of the warning condition register is described in Table 2.5.

Table 2.5 Warning Condition Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-</td>
<td>Always 0</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Peak current limiter is operating</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>RMS current limiter is operating</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Active wattage limiter is operating</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Output OFF after peak current limiter is activated</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Output OFF after RMS current limiter is activated</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Sensing voltage anomaly</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Power unit DCPS anomaly</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Synchronization frequency anomaly</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Overheat</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Power unit DCPS undervoltage</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Power unit DCPS overvoltage</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Output overcurrent (Peak)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power unit anomaly</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Output overcurrent (RMS)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Output overvoltage</td>
</tr>
</tbody>
</table>

2.2.5.7 Warning Status Transition Filter

The warning status transition filter is a filter for determining the event bit transition. The warning status transition filter is not cleared even when the *CLS command is received. For the relationship between the transition filter setting and the event register transitions, refer to Table 2.4.

2.2.5.8 Warning Event Register

The warning event register is a register that reflects the changes of the condition register according to the transition filter setting. The event register is cleared upon receipt of a query addressed to the event register or the *CLS command.

2.2.5.9 Warning Event Enable Register

The warning event enable register is used to select bits in the event register to be summarized.
2.2.6 System Lock Condition Register Group

The configuration of the System Lock condition register group is shown in Figure 2.5.

Figure 2.5 System Lock Condition Register Group
2.2.6.1 System Lock Condition Register

This register is not cleared even when a query addressed to the condition register is received. Each bit of the System Lock condition register is described in Table 2.6.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-</td>
<td>Always 0</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Unused</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Unused</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Unused</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Starts with different power line voltage, in polyphase connection</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Unused</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Unused</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Unused</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Unused</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Internal auxiliary power anomaly (DP075x/DP090x/DP105x/DP120x only)</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Polyphase system communication anomaly</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Internal communication anomaly 2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Internal communication anomaly 1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power input frequency anomaly</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Power input undervoltage</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Power input overvoltage</td>
</tr>
</tbody>
</table>

2.2.6.2 System Lock Status Transition Filter

The System Lock status transition filter is a filter for determining the event bit transition. The System Lock status transition filter is not cleared even when the *CLS command is received. For the relationship between the transition filter setting and the event register transitions, refer to Table 2.4.

2.2.6.3 System Lock Event Register

The System Lock event register is a register that reflects the changes of the condition register according to the transition filter setting. The event register is cleared upon reception of a query addressed to the event register or the *CLS command.

2.2.6.4 System Lock Event Enable Register

The System Lock event enable register is used to select bits in the event register to be summarized.
3. Remote Command Overview

3.1 Remote Command

30
3.1 Remote Command

3.1.1 Command Type and Format Concept

There are two types of remote commands of DP series; the common commands defined in IEEE488.2, and the commands defined according to SCPI (Standard Commands for Programmable Instruments) command specifications.

3.1.2 About SCPI

SCPI is a standard that defines the communication method between external controllers and measuring instruments.

For general information about SCPI, refer to the following document:

Standard Commands for Programmable Instruments (SCPI) VERSION 1999.0
http://www.ivifoundation.org/scpi/

Conventions

The commands mentioned in the description are written following conventions:

< > < > indicates something other than itself. In the case of parameter or response data, the abbreviation of the type is enclosed in < >. <NL> indicates an ASCII character that has the value of 10 decimal, and similarly, <^END> indicates EOI.

[] The items enclosed in [] are optional. Note that "[" and "]" are not part of the command.

{abc|xyz} Means that either "abc" or "xyz" should be used.

[abc|xyz] Indicates that either "abc" or "xyz" can be used, but both are optional.

Uppercase, lowercase A whole word consisting of the combination of upper and lowercase letters makes a long form of the keyword, while an uppercase only part makes a short form.
3.1.3 Supported Common Command

The DP series support the instrument common commands which comply with the IEEE488.2 standard.

All common commands begin with an asterisk (*), and some of them can use parameters.

The header of common command and the first parameter must be separated by a space code.

The common commands supported by the DP series are shown in Table 3.1.

<table>
<thead>
<tr>
<th>Command Query</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN?</td>
<td>Identification Query</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset Command</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-Test Query</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation Complete Command</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation Complete Query</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait-to-Continue Command</td>
</tr>
<tr>
<td>*CLS</td>
<td>Clear Status Command</td>
</tr>
<tr>
<td>*ESE</td>
<td>Standard Event Status Enable Command</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Standard Event Status Enable Query</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Standard Event Status Register Query</td>
</tr>
<tr>
<td>*SRE</td>
<td>Service Request Enable Command</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service Request Enable Query</td>
</tr>
<tr>
<td>*STB?</td>
<td>Read Status Byte Query</td>
</tr>
</tbody>
</table>
3.1.4 SCPI Command and Query Format

A SCPI command has a hierarchical structure that consists of a root keyword, one or more lower-level keywords, parameters, and suffixes. The followings show examples of command and query.

:OUTPut:STATe ON
:OUTPut:STATe?

OUTPut is the root-level keyword that links second-level keywords. ON is a command parameter.

3.1.5 SCPI Subsystem Command Tree

3.1.5.1 Structure of Command Tree

SCPI applies a hierarchical structure similar to the one used in a file system to subsystem commands.

In SCPI, this command structure is called a command tree, and Figure 3.1 shows an example of a command tree.

In the command tree shown in Figure 3.1, the keywords closest to the top ("[:SOURce]", "[:OUTPut]", and ":SYSTem") are root-level keywords. To reach a lower-level keyword, you must follow the path of keywords defined above it.

For example, to access ":OFFSet", the command should be specified by following the path [:SOURce] - :VOLTage - [:LEVel] - [:IMMediate] - :OFFSet.
3.1.5.2 Current Path Movement

The current path is a level within the command tree, and becomes the first command path from which the command parser starts the search when the next command is sent. The command parser determines the current path according to the following rules.

(1) At power-on and reset
 The current path is set to the root.
(2) Message terminator
 Upon reception of <NL> (message terminator), the current path is set to the root.
(3) Colon (command separator)
 When a colon is placed between two keywords, the colon moves the current path down one level in the command tree.
(4) Colon (root specifier)
 When a colon is placed at the beginning of a command, the colon sets the current path to the root.
(5) Semicolon
 Semicolons do not affect to the current path.
(6) Space
 Spaces do not affect to the current path.
(7) Comma
 Commas do not affect to the current path.
(8) IEEE488.2 common command
 Common commands do not affect to the current path.

By using semicolons properly, multiple commands can be sent efficiently.

For example,

```
:SOURce:VOLTage:LEVel:IMMediate:AMPLitude 1.0; OFFSet 1.0<NL><^END>
```

is the same as sending the following two commands:

```
:SOURce:VOLTage:LEVel:IMMediate:AMPLitude 1.0<NL><^END>
:SOURce:VOLTage:LEVel:IMMediate:OFFSet 1.0<NL><^END>
```
When an optional keyword is omitted, you should pay careful attention to the current path movement.

For example,

```
:VOLTage 1.0<NL><^END>
```

sets the current path to ":SOURce."

If you want to send the following two program messages as one program message,

```
:SOURce:VOLTage:LEVel:IMMediate:AMPLitude 1.0<NL><^END>
:SOURce:FREQuency:FIXed 100.0<NL><^END>
```

<Program message which is executed properly>

```
:SOURce:VOLTage 1.0; FREQuency:FIXed 100.0<NL><^END>
```

<Program message which causes parsing error>

```
:SOURce:VOLTage:LEVel:IMMediate:AMPLitude1.0; FREQuency:FIXed 100.0<NL><^END>
```

Here, the current path of the second command is
".SOURce:VOLTage:LEVel:IMMediate" (by right, it must be ".SOURce"). Therefore,
".FREQuency:FIXed 100.0" causes parsing error.
3.1.6 Elements of SCPI Commands

3.1.6.1 Common Command Syntax

The syntax of common commands is shown in Figure 3.2. In this figure, a keyword consists of three alphanumeric characters, beginning with an alphabetic character.

![Figure 3.2 Common Command Syntax](image)

"SP" in Figure 3.2 is technically as shown in Figure 3.3 (hereinafter, all SP means the same).

![Figure 3.3 SP Syntax](image)

3.1.6.2 Subsystem Command Syntax

The syntax of the subsystem commands is shown in Figure 3.4.

![Figure 3.4 Subsystem Command Syntax](image)

3.1.6.3 Keyword

The keyword in the command syntax is a string of up to 12 characters consisting of uppercase and lowercase alphabetic characters, underscore (_), and numeric characters, beginning with an alphabetic character.

Most keywords are shown as a mixture of uppercase and lowercase characters.

The uppercase characters represent the short form for commands. Either long or short form format can be accepted; commands are not case sensitive actually.

Examples for the keyword "OUTPut" are listed in Table 3.2.
Table 3.2 Acceptable and Unacceptable Keywords (for "OUTPut")

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td>Accepted as long form.</td>
</tr>
<tr>
<td>OUTP</td>
<td>Accepted as short form.</td>
</tr>
<tr>
<td>OuTpUt</td>
<td>Accepted as long form without distinguishing uppercase and lowercase characters.</td>
</tr>
<tr>
<td>oUtP</td>
<td>Accepted as short form without distinguishing uppercase and lowercase characters.</td>
</tr>
<tr>
<td>OUTPU</td>
<td>Not accepted because it corresponds to neither long form nor short form.</td>
</tr>
<tr>
<td>OUT</td>
<td>Not accepted because it corresponds to neither long form nor short form.</td>
</tr>
</tbody>
</table>

3.1.6.4 Keyword Separator

Keyword separators serve to separate the current keyword and the next lower-level keyword as shown in the example below. Colons (:) are used as keyword separators.

:OUTPut:STATe?

3.1.6.5 Root Specifier

A colon (:) at the beginning of the subsystem command serves as a root specifier. The root specifier sets the current path to the root. As colons (:) are also used as command separators, you need to carefully use them depending on your purpose.

SOURce:FREQuency:FIXed 100.0
→ All colons are header separators
SOURce:FREQuency:FIXed 1.0
→ The first colon is the root specifier
SOURce:FREQuency:FIXed 100.0; :OUTPut ON
→ The third colon is the root specifier

3.1.6.6 Optional Keywords

The keywords enclosed in square brackets ([]) are optional, and can be omitted. However, the square brackets ([]) are used for description purpose only, and are not included in the actual command to be sent. If the keyword is omitted, the command parser interprets the command as if that optional keyword is received.

For example,

:OUTPut[:STATe]

means that you can use either of the following commands:

:OUTPut:STATe
:OUTPut
3.1.6.7 Implied Channels (Optional Numeric Keyword Suffix)

Many commands allow you to specify channels by using an optional numeric keyword suffix. For example,

:OUTPut[1|2]:STATe {ON|OFF}

means commands for channel 1 and 2 as follows:

:OUTPut[1]:STATe {ON|OFF}
:OUTPut2:STATe {ON|OFF}

Here, you need to note that if you do not specify the channel number, the channel 1 will be selected as an implied channel.

For example, to control the channel 1 output to be turned ON, you can use either of the following commands.

:OUTPut1:STATe ON
:OUTPut:STATe ON

3.1.6.8 Parameter Type

In the command list, the angle brackets (<>) indicate parameters. The parameter type is one of the following types.

Numeric parameter (<REAL>, <INT>)

The syntax of numeric parameters is shown in Figure 3.5.

![Figure 3.5 Numeric Parameter (<REAL>, <INT>) Syntax](image)

The syntaxes of the mantissa and index in Figure 3.5 are shown in Figure 3.6 and Figure 3.7.
3.1.6.9 Discrete Parameter (<DISC>)

The syntax of the discrete parameter is shown in Figure 3.8.
3.1.6.10 Boolean Value Parameter (<BOL>)

The syntax of the Boolean value parameter is shown in Figure 3.9.

![Figure 3.9 Boolean Value Parameter (<BOL>) Syntax](image)

The boolean parameter is interpreted the values other than 0 as true, and 0 as false. If the specified value includes a fractional part, that value is interpreted as the whole number obtained by rounding the fractional part. Therefore, "0.4" is false (rounded off to 0), and "0.5" is true (rounded off to 1).

3.1.6.11 String Program Data (<STR>)

The syntax of the string program data is shown in Figure 3.10.

![Figure 3.10 String Parameter (<STR>) Syntax](image)

In the DP series, you cannot use the following nine characters as a part of a string: \\, /, :, *, ?, "", <, >, |. If the string includes one of these characters, an error process will be raised. (The error message returns an error code :-150 "String data error.")
3.1.6.12 Block Program Data (&BLK&)

The syntax of the block program data is shown in Figure 3.11.

For the definite length block program data, if "^END" is received before receiving the specified number of bytes, it is treated as a command error.

The DP series only accept the definite length block program data, and the number string between # and the first byte data is fixed to 48192. The byte data must be 8192 bytes.

3.1.6.13 Parameter Separator

If you want to send multiple parameters in one command, you need to separate the adjacent parameters with a comma (,).

3.1.6.14 Query Parameter

Most of the queries supported by the commands that have decimal numeric parameters can return the minimum or maximum values if "MINimum" or "MAXimum" is specified after "?". For example, to query the minimum and maximum values of the frequency, send the following queries:

:SOURce:FREQuency? MINimum
:SOURce:FREQuency? MAXimum

3.1.6.15 Suffix

The syntax of suffix is shown in Figure 3.12.
3.1.6.16 Command Terminator

A command terminator is either <NL> (ASCII character decimal 10), an EOI (End-of Identify) asserted by the last byte, or an EOI asserted by <NL>.

Using multiple commands

Program message

A program message is a combination of one or more IEEE488.2 common commands and SCPI commands, and used to send multiple commands at once.

Program Message Syntax

The syntax of the program message is shown in Figure 3.13.

![Figure 3.13 Program Message Syntax](image-url)
3.1.7 Overview of Response Message Formats

3.1.7.1 Response Message
The response data that can be read from the DP series when the command is sent by the computer to inquire something is called "response message." The command sent by the computer is called "query", and a question mark (?) is placed at the end of the command.

3.1.7.2 Response Message Syntax
The syntax of the response message is shown in Figure 3.14.

![Figure 3.14 Response Message Syntax](image)

In response messages, commas (,) and semicolons (;) are used as separators. When multiple values are returned by one command, data items are separated by commas (,). When multiple queries are sent in the same message, the data item groups for each query are separated by semicolons (;).

3.1.7.3 Response Message Data Type
The data type of the response message is one of the followings:

Real number response data syntax (<REAL>)
The syntax of the real number response data is shown in Figure 3.15.

![Figure 3.15 Real Number Response Data (<REAL>) Syntax](image)

The syntax of the NR2 number response data is shown in Figure 3.16.
The syntax of the NR3 number response data is shown in Figure 3.17.

Integer response data (<INT>)

The syntax of the integer response data is shown in Figure 3.18. The integer response data syntax is same as that of the NR1 number response data defined in IEEE488.2.
Discrete response data (<DISC>)
The syntax of the discrete response data is shown in Figure 3.19. The response data is always in short form.

![Figure 3.19 Discrete Response Data (<DISC>) Syntax](image)

Numeric Boolean value response data (<NBOL>)
The syntax of the numeric Boolean value response data is shown in Figure 3.20.

![Figure 3.20 Numeric Boolean Value Response Data (<NBOL>) Syntax](image)

String response data (<STR>)
The syntax of the string response data is shown in Figure 3.21.
Note that double quotation (") is never contained in a response string in the DP series.

![Figure 3.21 String Response Data (<STR>) Syntax](image)
Definite length arbitrary block response data (<DBLK>)
The syntax of the definite length arbitrary block response data is shown in Figure 3.22. However, the DP series does not return this type of response message.

![Figure 3.22 Definite Length Arbitrary Block Response Data Syntax (<DBLK>)](image1)

Indefinite length arbitrary block response data (<IBLK>)
The syntax of the indefinite length arbitrary block response data is shown in Figure 3.23. However, the DP series does not return this type of response message.

![Figure 3.23 Indefinite Length Arbitrary Block Response Data Syntax (<IBLK>)](image2)
4. Remote Command Reference

4.1 Program Command List ... 48
4.2 Program Command Description 60
4.1 Program Command List

This chapter describes the program commands for the DP series. Some commands may be given permission or inhibition of acceptance for each output function.

Some other commands may be handled as a command error or may not be accepted, to maintain the integrity of the internal operation state of the DP series. In addition, some commands may not be run depending on the output phase mode or options supported by the purchased product.

For these commands that require special attentions, tips are described to run them properly in "Program Command Description".
4.1.1 List of Commands Common to Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
<th>Set</th>
<th>Query</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Command (IEEE488.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device ID</td>
<td>*IDN?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Self-Check</td>
<td>*TST?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Clear event register and error queue</td>
<td>*CLS</td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/get the standard event status enable register</td>
<td>*ESE</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Get the standard event status register</td>
<td>*ESR?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Set/get the service request enable register</td>
<td>*SRE</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Get the status byte register</td>
<td>*STB?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Wait for synchronization of the overlap command</td>
<td>*WAI</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the OPC bit at the operation completion</td>
<td>*OPC</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get the operation completion state</td>
<td>*OPC?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Operate System Lock Condition Register</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get the System Lock condition register</td>
<td>:STATus:LOCK:CONDition?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Set/get the System Lock event enable register</td>
<td>:STATus:LOCK:ENABle</td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Get the System Lock event register</td>
<td>:STATus:LOCK[:EVENt]?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Set/get the System Lock transition filter (negative)</td>
<td>:STATus:LOCK:NTRansition</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Set/get the System Lock transition filter (positive)</td>
<td>:STATus:LOCK:PTRansition</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Operate Operation Condition Register</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation condition register</td>
<td>:STATus:OPERation:CONDition?</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Feature</td>
<td>Command</td>
<td>Status</td>
<td>Sim.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Operation event enable register</td>
<td>:STATus:OPERation:ENABle</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Operation event register</td>
<td>:STATus:OPERation[:EVENT]?</td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Operation transition filter (negative)</td>
<td>:STATus:OPERation:NTRansition</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Operation transition filter (positive)</td>
<td>:STATus:OPERation:PTRansition</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Get Error Message</td>
<td>:SYSTem:ERRor?</td>
<td>__</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Operate Warning Condition Register</td>
<td>:STATus:WARNing:CONDition?</td>
<td>__</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Get the warning condition register</td>
<td>:STATus:WARNing:ENABle</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/get the warning event enable register</td>
<td>:STATus:WARNing[:EVENT]?</td>
<td>__</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Get the warning event register</td>
<td>:STATus:WARNing[:EVENT]?</td>
<td>__</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/get the warning transition filter (negative)</td>
<td>:STATus:WARNing:NTRansition</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/get the warning transition filter (positive)</td>
<td>:STATus:WARNing:PTRansition</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Release the warning</td>
<td>:SYSTem:WRElease</td>
<td>○</td>
<td>__</td>
<td></td>
</tr>
<tr>
<td>Output Control</td>
<td>:OUTPut[:STATe]</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Output on/off</td>
<td>:OUTPut:PON</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Output at power-on</td>
<td>:OUTPut:RELay</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Output relay control</td>
<td>:TRIgger:POLarity</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Device Configuration</td>
<td>:TRIgger:WIDTh</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Get the phase configuration</td>
<td>:SYSTem:CONFigure:PHASe?</td>
<td>__</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/Get Output Function</td>
<td>:SYSTem:CONFigure[:MODE]</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set Panel Display Operation</td>
<td>:DISPlay:CONTrast</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>LCD contrast adjustment value</td>
<td>:DISPlay[:WINDow]:BACKground:COLor</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>LCD display color</td>
<td>:SYSTem:KLOCK</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Key lock</td>
<td>:SYSTem:BEEPer:STATe</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Beep</td>
<td>:SYSTem:BEEPer:STATe</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>
Get Power Unit State

Get the number of connected units	:SYSTem:CONFigure:NPU[:STATE]?		
Get the number of energizations	:SYSTem:CONFigure:NPU:ENABle?		
Get the error status	:SYSTem:CONFigure:NPU:ERRor?		

Set Monitor Output

Monitor output	:OUTPut:MONitor:MODE	0	0
Specify the output phase (phase number)	:OUTPut:INSTRument:NSELect	0	0
Specify the output phase (phase)	:OUTPut:INSTRument:SELect	0	0
4.1.2 List of Continuous Function Commands

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
<th>Set</th>
<th>Query</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Command (IEEE488.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initialize the basic setting</td>
<td>*RST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select/set the basic setting</td>
<td>*RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store the basic setting</td>
<td>*SAV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Panel Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/get the Normal View/Simple View mode</td>
<td>:DISPLAY[:WINDow]:DESign:MODE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/get the display items at Simple View</td>
<td>:DISPLAY[:WINDow]:DESign:SIMPle:ITEM</td>
<td></td>
<td></td>
<td>Q/PF/CF specifies the extended measurement</td>
</tr>
<tr>
<td>Set the measurement display phase (phase number)</td>
<td>:DISPLAY[:WINDow]:INSTRument:NSELect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the measurement display phase (phase)</td>
<td>:DISPLAY[:WINDow]:INSTRument:SELect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/get the measurement display selection</td>
<td>:DISPLAY[:WINDow]:MEASure:MODE</td>
<td></td>
<td></td>
<td>HC1/HC2/HC3/HC4 specifies the extended measurement</td>
</tr>
<tr>
<td>Output Setting (for All Phases)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/get the output range*1</td>
<td>[:SOURce]:VOLTage:RANGe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the AC/DC mode*1</td>
<td>[:SOURce]:MODE</td>
<td></td>
<td></td>
<td>EXT/ADD specifies the external signal input</td>
</tr>
<tr>
<td>Set/get the output frequency</td>
<td>[:SOURce]:FREQuency[:IMMediate]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the output on phase</td>
<td>[:SOURce]:PHAsE:STARt[:IMMediate]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable/disable the output off phase specification</td>
<td>[:SOURce]:PHAsE:STOP:ENABle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the output off phase</td>
<td>[:SOURce]:PHAsE:STOP[:IMMediate]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/get the balanced/unbalanced mode</td>
<td>[:SOURce]:PHAsE:MODE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the remote sensing function*3</td>
<td>:MEASure:CONFigure:SENSing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Setting (for Specific Phase)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify the phase to set (phase number)</td>
<td>:INSTRument:NSELect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify the phase to set (phase)</td>
<td>:INSTRument:SELect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Command</td>
<td>Width</td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Set/set the AC output voltage</td>
<td>[:SOURce]:VOLTage[:LEVel][:IMMediate][:AMPLitude]</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/set the DC output voltage</td>
<td>[:SOURce]:VOLTage[:LEVel][:IMMediate]:OFFSet</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Select the output waveform</td>
<td>[:SOURce]:FUNCTION[:SHApe][:IMMediate]</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set/get the phase angle at polyphase model/polyphase system</td>
<td>[:SOURce]:PHASE:PHASE</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set the DC offset voltage adjustment value (AC mode)</td>
<td>[:SOURce]:VOLTage:ADJust:OFFSet:AC</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set the DC offset voltage adjustment value (ACDC and DC modes)</td>
<td>[:SOURce]:VOLTage:ADJust:OFFSet:DC</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>

Voltage Setting Range Limit

Voltage setting range limit (effective value)	[:SOURce]:VOLTage:LIMit:RMS	○	○
Voltage setting range (peak value <maximum>)	[:SOURce]:VOLTage:LIMit:HIGH	○	○
Voltage setting range (peak value <minimum>)	[:SOURce]:VOLTage:LIMit:LOW	○	○

Current Limiter

Set the current limiter (effective value)	[:SOURce]:CURRent:LIMit:RMS[:AMPLitude]	○	○
Set off after the current limiter (effective value) is activated	[:SOURce]:CURRent:LIMit:RMS:MODE	○	○
Set the time before turning off after the current limiter (effective value) is activated	[:SOURce]:CURRent:LIMit:RMS:TIME	○	○
Set the current limiter (peak value <maximum>)	[:SOURce]:CURRent:LIMit:PEAK:HIGH	○	○
Set the current limiter (peak value <minimum>)	[:SOURce]:CURRent:LIMit:PEAK:LOW	○	○
Set off after the current limiter (peak value) is activated	[:SOURce]:CURRent:LIMit:PEAK:MODE	○	○
Time before turning off after the current limiter (peak value) is activated	[:SOURce]:CURRent:LIMit:PEAK:TIME	○	○

Frequency Setting Range Limit

| Set the upper limit value of the frequency setting range limit | [:SOURce]:FREQuency:LIMit:HIGH | ○ | ○ |
| Set the lower limit value of the frequency setting range limit | [:SOURce]:FREQuency:LIMit:LOW | ○ | ○ |
Get Output Measured Value

<table>
<thead>
<tr>
<th>Operation</th>
<th>Command Pattern</th>
<th>Extended Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear the output current peak-hold value</td>
<td>:MEASure[:SCALar]:CURRent:PEAK:CLEar</td>
<td></td>
</tr>
<tr>
<td>Get the output current peak-hold value</td>
<td>:MEASure[:SCALar]:CURRent:PEAK:HOLD?</td>
<td></td>
</tr>
<tr>
<td>Get the synchronization signal source frequency</td>
<td>:MEASure[:SCALar]:FREQuency?</td>
<td></td>
</tr>
</tbody>
</table>

Get Output Measured Value (for Specific Phase)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Command Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the measurement query phase (phase number)</td>
<td>:MEASure:INSTrument:NSElect</td>
</tr>
<tr>
<td>Specify the measurement query phase (phase)</td>
<td>:MEASure:INSTrument:SELect</td>
</tr>
<tr>
<td>Output voltage (effective value)</td>
<td>:MEASure[:SCALar]:VOLTage[:RMS]?</td>
</tr>
<tr>
<td>Output voltage (average value)</td>
<td>:MEASure[:SCALar]:VOLTage:AVErage?</td>
</tr>
<tr>
<td>Output voltage (peak value <maximum>)</td>
<td>:MEASure[:SCALar]:VOLTage:HIGH?</td>
</tr>
<tr>
<td>Output voltage (peak value <minimum>)</td>
<td>:MEASure[:SCALar]:VOLTage:LOW?</td>
</tr>
<tr>
<td>Output current (effective value)</td>
<td>:MEASure[:SCALar]:CURRent[:RMS]?</td>
</tr>
<tr>
<td>Output current (average value)</td>
<td>:MEASure[:SCALar]:CURRent:AVErage?</td>
</tr>
<tr>
<td>Output current (peak value <maximum>)</td>
<td>:MEASure[:SCALar]:CURRent:HIGH?</td>
</tr>
<tr>
<td>Output current (peak value <minimum>)</td>
<td>:MEASure[:SCALar]:CURRent:LOW?</td>
</tr>
<tr>
<td>Control the harmonic current measurement function</td>
<td>:MEASure[:SCALar]:CURRent:HARMonic:ENABle</td>
</tr>
<tr>
<td>Get the harmonic current value</td>
<td>:MEASure[:SCALar]:CURRent:HARMonic[:RMS]?</td>
</tr>
<tr>
<td>Get the harmonic current percentage</td>
<td>:MEASure[:SCALar]:CURRent:HARMonic:RATio?</td>
</tr>
<tr>
<td>Get the output current crest factor</td>
<td>:MEASure[:SCALar]:CURRent:CFACtor?</td>
</tr>
<tr>
<td>Get the apparent power</td>
<td>:MEASure[:SCALar]:POWer[:AC]:APParent?</td>
</tr>
<tr>
<td>Get the power factor</td>
<td>:MEASure[:SCALar]:POWer[:AC]:PFACtor?</td>
</tr>
<tr>
<td>Get the reactive power</td>
<td>:MEASure[:SCALar]:POWer[:AC]:REACtive?</td>
</tr>
<tr>
<td>Get the active power</td>
<td>:MEASure[:SCALar]:POWer[:AC][:REAL]?</td>
</tr>
</tbody>
</table>

CO₂ Calculation Function

<table>
<thead>
<tr>
<th>Operation</th>
<th>Command Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear the emission CO₂ integration value</td>
<td>:MEASure: CO2:TOTal:CLEar</td>
</tr>
<tr>
<td>Set/get the emission CO₂ coefficient</td>
<td>:MEASure: CO2:COEFficient</td>
</tr>
<tr>
<td>Get the emission CO₂ internal loss instantaneous value</td>
<td>:MEASure: CO2:RATE:LOSS?</td>
</tr>
<tr>
<td>Get the emission CO₂ output power instantaneous value</td>
<td>:MEASure: CO2:RATE:OUTPut?</td>
</tr>
<tr>
<td>Operation</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Get the emission CO₂ internal loss integration value</td>
<td>:MEASure: CO2:TOTal:LOSS?</td>
</tr>
<tr>
<td>Get the emission CO₂ output power integration value</td>
<td>:MEASure: CO2:TOTal:OUTPut?</td>
</tr>
</tbody>
</table>

AGC/Autocal Function Setting

Enable/disable the AGC function*3 | :OUTHPut:AGC | ○ | ○ |
Enable/disable the Autocal function*3 | :OUTHPut:ACALibration | ○ | ○ |

Set External Input Signal

External input gain | :INPut:GAIN | ○ | ○ |
External synchronization signal source | :INPut:SYNC:SOURce | ○ | ○ |

Set/Get Output Waveform

Set/get the clipped sine wave type specification*2 | [:SOURce]:FUNCtion:CSINe:TYPE | ○ | ○ |
Set/get the clipped sine wave crest factor*2 | [:SOURce]:FUNCtion:CSINe:CFACtor | ○ | ○ |
Set/get the clipped sine wave clip ratio*2 | [:SOURce]:FUNCtion:CSINe:CLIP | ○ | ○ |
Save the clipped sine wave*2 | :TRACe|DATA:CSINe:STORe | ○ | — |
Initialize the arbitrary wave memory*2 | :TRACe|DATA:WAVe:CLEar | ○ | — |
Transfer the arbitrary wave data*2 | :TRACe|DATA:WAVe[:DATA] | ○ | — |
Specify the arbitrary wave name | :TRACe|DATA:WAVe:NAME | ○ | ○ |

Set External Control Signal

Permit/inhibit the external control input | :SYSTem:CONFigure:EXTio[:STATe] | ○ | ○ |
Set/get the external control state output polarity | :SYSTem:CONFigure:EXTio:POLarity | ○ | ○ |

*1 The setting is held by each output function.
After the output function is switched, the setting held by the new output function is forcibly used.

*2 The setting in the Continuous function is reflected to the Sequence and Simulation functions.
Switch to the Continuous function first, and then make the setting.
After making the setting, switch back to the output function to run.

*3 Switching the output function from the Continuous function to another forcibly releases the operation setting.
When you want to return from another function and enable the operation setting in the Continuous function again, you must make the operation setting.
4.1.3 List of Sequence Function Commands (Option for Order)

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
<th>Set</th>
<th>Query</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Panel Display</td>
<td>:DISPlay[:WINDow]:TIME:UNIT</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Sequence Function Control</td>
<td>[:SOURce]:SEQuence:CONtrol[:STAte]</td>
<td></td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Get the state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control the execution</td>
<td>:TRIGger:SEQuence:SELection:EXECute</td>
<td>○</td>
<td></td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Switch to the Edit mode</td>
<td>[:SOURce]:SEQuence:EDIT</td>
<td>○</td>
<td></td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Compile the setting parameter and switch to the Control mode</td>
<td>:TRIGger:SEQuence:COMpile</td>
<td>○</td>
<td></td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Get the running step number</td>
<td>[:SOURce]:SEQuence:CSTEP?</td>
<td></td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set Parameter Common to Steps (Enabled at Edit Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the Step-control parameter</td>
<td>[:SOURce]:SEQuence:CPARameter</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set Parameter for Specified Step (Enabled at Edit Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify the step number to set</td>
<td>[:SOURce]:SEQuence:STEP</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Specify the phase to set (phase number)</td>
<td>[:SOURce]:SEQuence:INSTrument:NSELect</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Specify the phase to set (phase)</td>
<td>[:SOURce]:SEQuence:INSTrument:SELect</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set the intra-Step parameter</td>
<td>[:SOURce]:SEQuence:SPARameter</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Initialize/Read/Save Sequence Data (Enabled at Edit Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initialize the Sequence data</td>
<td>:TRACe</td>
<td>DATA:SEQuence:CLEAR</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Sequence data name</td>
<td>:TRACe</td>
<td>DATA:SEQuence:NAME</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Read the Sequence data</td>
<td>:TRACe</td>
<td>DATA:SEQuence:RECall</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Save the Sequence data</td>
<td>:TRACe</td>
<td>DATA:SEQuence:STORe</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>
4.1.4 List of Simulation Function Commands (Option for Order)

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
<th>Set</th>
<th>Query</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Panel Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the Step Time display unit</td>
<td>:DISPlay[:WiNDow]:TIME:UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation Function Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get the state</td>
<td>[:SOURce]:SIMulation:CONTrol[:STATe]?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control the execution</td>
<td>:TRIGger:SIMulation:SELected:EXECute</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Switch to the Edit mode</td>
<td>[:SOURce]:SIMulation:EDIT</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Compile the setting parameter</td>
<td>:TRIGger:SIMulation:COMPile</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>and switch to the Control mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get the running step number</td>
<td>[:SOURce]:SIMulation:CSTep?</td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set Repeat Execution (Enabled at Edit Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable/disable the repeat</td>
<td>[:SOURce]:SIMulation:REPeat:ENABle</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>execution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the repeat execution count</td>
<td>[:SOURce]:SIMulation:REPeat:COUNT</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set Parameter for Initial Step (Enabled at Edit Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the output voltage</td>
<td>[:SOURce]:SIMulation:INITial:VOLTage</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set the frequency</td>
<td>[:SOURce]:SIMulation:INITial:FREQuency</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Enable/disable the start phase</td>
<td>[:SOURce]:SIMulation:INITial:PHASE:START:ENABl e</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the start phase</td>
<td>[:SOURce]:SIMulation:INITial:PHASE:START[:IMMe diate]</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Enable/disable the stop phase</td>
<td>[:SOURce]:SIMulation:INITial:PHASE:STOP:ENABl e</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the stop phase</td>
<td>[:SOURce]:SIMulation:INITial:PHASE:STOP[:IMMe diate]</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set the synchronization output</td>
<td>[:SOURce]:SIMulation:INITial:CODE</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set Parameter for Normal 1 Step (Enabled at Edit Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the execution time</td>
<td>[:SOURce]:SIMulation:NORMal1:TIME</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set the output voltage</td>
<td>[:SOURce]:SIMulation:NORMal1:VOLTage</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Set the frequency</td>
<td>[:SOURce]:SIMulation:NORMal1:FREQuency</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Enable/disable the start phase specification</td>
<td>[:SOURce]:SIMulation:NORMal1:PHASe:START:EN ABle</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set the start phase</td>
<td>[:SOURce]:SIMulation:NORMal1:PHASe:START[:IM Mediate]</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Enable/disable the stop phase specification</td>
<td>[:SOURce]:SIMulation:NORMal1:PHASe:STOP:EN ABle</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set the stop phase</td>
<td>[:SOURce]:SIMulation:NORMal1:PHASe:STOP[:IM Mediate]</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set the synchronization output</td>
<td>[:SOURce]:SIMulation:NORMal1:CODE</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
<tr>
<td>Set the trigger output (G1)</td>
<td>[:SOURce]:SIMulation:NORMal1:TRIGger[:STATe]</td>
<td>○</td>
<td>○</td>
<td>Sequence and Simulation</td>
</tr>
</tbody>
</table>

Set Parameter for Trans 1 Step (Enabled at Edit Mode)

Set the execution time	[:SOURce]:SIMulation:TRANsition1:TIME	○	○	Sequence and Simulation
Set the synchronization output	[:SOURce]:SIMulation:TRANsition1:CODE	○	○	Sequence and Simulation
Set the trigger output (G2)	[:SOURce]:SIMulation:TRANsition1:TRIGger[:STATe]	○	○	Sequence and Simulation

Set Parameter for Abnormal Step Parameter (Enabled at Edit Mode)

Set the execution time	[:SOURce]:SIMulation:ABNormal:TIME	○	○	Sequence and Simulation
Set the output voltage	[:SOURce]:SIMulation:ABNormal:VOLTage	○	○	Sequence and Simulation
Set the frequency	[:SOURce]:SIMulation:ABNormal:FREQuency	○	○	Sequence and Simulation
Enable/disable the start phase specification	[:SOURce]:SIMulation:ABNormal:PHASe:START:EN ABle	○	○	Sequence and Simulation
Set the start phase	[:SOURce]:SIMulation:ABNormal:PHASe:START[:IM Mediate]	○	○	Sequence and Simulation
Enable/disable the stop phase specification	[:SOURce]:SIMulation:ABNormal:PHASe:STOP:EN ABle	○	○	Sequence and Simulation
Set the stop phase	[:SOURce]:SIMulation:ABNormal:PHASe:STOP[:IM Mediate]	○	○	Sequence and Simulation
Set the synchronization output	[:SOURce]:SIMulation:ABNormal:CODE	○	○	Sequence and Simulation
Set the trigger output (G3)	[:SOURce]:SIMulation:ABNormal:TRIGger[:STATe]	○	○	Sequence and Simulation

Set Parameter for Trans 2 Step (Enabled at Edit Mode)

Set the execution time	[:SOURce]:SIMulation:TRANsition2:TIME	○	○	Sequence and Simulation
Set the synchronization output	[:SOURce]:SIMulation:TRANsition2:CODE	○	○	Sequence and Simulation
Set the trigger output (G4)	[:SOURce]:SIMulation:TRANsition2:TRIGger[:STATe]	○	○	Sequence and Simulation

Set Parameter for Normal 2 Step (Enabled at Edit Mode)

Set the execution time	[:SOURce]:SIMulation:NORMal2:TIME	○	○	Sequence and Simulation
Enable/disable the start phase specification	[:SOURce]:SIMulation:NORMal2:PHAsE:STARt:ENABLE	○	○	Sequence and Simulation
Set the start phase	[:SOURce]:SIMulation:NORMal2:PHAsE:STARt[:IMMediate]	○	○	Sequence and Simulation
Enable/disable the stop phase specification	[:SOURce]:SIMulation:NORMal2:PHAsE:STOP:ENABLE	○	○	Sequence and Simulation
Set the stop phase	[:SOURce]:SIMulation:NORMal2:PHAsE:STOP[:IMMediate]	○	○	Sequence and Simulation
Set the synchronization output	[:SOURce]:SIMulation:NORMal2:CODE	○	○	Sequence and Simulation
Set the trigger output (G5)	[:SOURce]:SIMulation:NORMal2:TRIGger[:STATe]	○	○	Sequence and Simulation

Initialize/Read/Save Simulation (Enabled at Edit Mode)

Initialize the Simulation data	:TRACe	DATA:SIMulation:CLEAR	○	—	Sequence and Simulation
Simulation data name	:TRACe	DATA:SIMulation:NAME	○	○	Sequence and Simulation
Read the Simulation data	:TRACe	DATA:SIMulation:RECall	○	—	Sequence and Simulation
Save the Simulation data	:TRACe	DATA:SIMulation:STORE	○	—	Sequence and Simulation
4.2 Program Command Description

4.2.1 Commands Common to Functions

4.2.1.1 Common Command (IEEE488.2): Device ID

*IDN?

Description
Gets the device ID
Query parameter
None
Response format
<STR>
Query example
*IDN?
Response example
NF Corporation,DP060S,1234567,1.00

4.2.1.2 Common Command (IEEE488.2): Self-Check

*TST?

Description
Gets the self-check result
For the DP series, it always returns 0 without performing the self-check
Query parameter
None
Response format
<INT>
Query example
*TST?
Response example
0
Remarks
The response message to the query is not returned during the System Lock.
4.2.1.3 Common Command (IEEE488.2): Clear Event Register and Error Queue

*CLS

Description
Clears event register and error queue
For the event register, see 2.2.2, 2.2.4.1, 2.2.5.3, 2.2.5.8, and 2.2.6.3

Setting parameter
None

Setting example
*CLS

4.2.1.4 Common Command (IEEE488.2): Set/Get Standard Event Status Enable Register

*ESE

Description
Sets/Gets the standard event status enable register
For the standard event status enable register, see 2.2.4.2

Setting parameter
<value> ::= <INT>

<INT> → Register setting value: 0 to 255

Query parameter
None

Response format
<INT>

Setting example
*ESE 8

Query example
*ESE?

Response example
8
4.2.1.5 Common Command (IEEE488.2): Get Standard Event Status Register

*ESR?

Description
Gets the standard event status register
For the standard event status register, see 2.2.4.1

Query parameter
None

Response format
*ESR?

Response example

8

4.2.1.6 Common Command (IEEE488.2): Set/Get Service Request Enable Register

*SRE

Description
Sets/gets the service request enable register
For the service request enable register, see 2.2.3

Setting parameter

<value> ::= <INT>

<INT> → Register setting value: 0 to 255

Query parameter
None

Response format

Setting example
*SRE 8

Query example
*SRE?

Response example
8
4.2.1.7 Common Command (IEEE488.2): Get Status Byte Register

*STB?

Description

Gets the status byte register

For the status byte register, see 2.2.2

Query parameter

None

Response format

<INT>

Query example

*STB?

Response example

8
4.2.1.8 Common Command (IEEE488.2): Wait for Synchronization of Overlap Command

*WAI

Description
Waits for completion of all the previous commands
Overlap commands return the control without waiting for the completion.
This command is accepted in the main unit and does not return the control before all the running commands (including ones other than the overlap commands) are completed.

Setting parameter
None

Setting example
*WAI

Remarks
The overlap commands include:

:OUTPut[:STATe]
[:SOURce]:VOLTage:RANGe
:MEASure:CO2:TOTA1:CLEar
:SYSTem:WRELease
:TRACe|DATA:CSINe:STORe
:TRACe|DATA:SEQUence:CLEar
:TRACe|DATA:SEQUence:NAME
:TRACe|DATA:SEQUence:RECall
:TRACe|DATA:SEQUence:STORe
:TRACe|DATA:SIMulation:CLEar
:TRACe|DATA:SIMulation:NAME
:TRACe|DATA:SIMulation:RECall
:TRACe|DATA:SIMulation:STORe
:TRACe|DATA:WAVe:CLEar
:TRACe|DATA:WAVe[:DATA]
:TRACe|DATA:WAVe:NAME
*RCL
*SAV
4.2.1.9 Common Command (IEEE488.2): Set OPC Bit at Operation Completion

*OPC

Description
Sets the OPC bit to 1 when all the previous commands are completed
For the OPC bit, see 2.2.4.1

Setting parameter
None

Setting example
*OPC

4.2.1.10 Common Command (IEEE488.2): Get Operation Completion State

*OPC?

Description
Sets the output buffer to 1 when all the previous commands are completed

Query parameter
None

Response format
<INT>

Query example
*OPC?

Response example
1
4.2.1.11 Operate System Lock Condition Register: System Lock Condition Register

:STATus:LOCK:CONDition?

Description

Gets the System Lock condition register

For the System Lock condition register, see **2.2.6.1**

Query parameter

None

Response format

<INT>

Query example

STAT:LOCK:COND?

Response example

1

4.2.1.12 Operate System Lock Condition Register: System Lock Event Enable Register

:STATus:LOCK:ENABLE

Description

Sets/gets the System Lock event enable register

For the System Lock event enable register, see **2.2.6.4**

Setting parameter

<value> ::= <INT>

<INT> → Register setting value: 0 to 65535

Query parameter

None

Response format

<INT>

Setting example

STAT:LOCK:ENAB 1

Query example

STAT:LOCK:ENAB?

Response example

1
4.2.1.13 Operate System Lock Condition Register: System Lock Event Register
:STATus:LOCK[:EVENt]?

Description
Gets the System Lock event register
For the System Lock event register, see 2.2.6.3

Query parameter
None

Response format
<INT>

Query example
STAT:LOCK?

Response example
16384

4.2.1.14 Operate System Lock Condition Register: System Lock Transition Filter (Negative)
:STATus:LOCK:NTRansition

Description
Sets/gets the System Lock transition filter (negative)
For the System Lock transition filter, see 2.2.6.2

Setting parameter
<value> ::= <INT>

<INT> → Register setting value: 0 to 65535

Query parameter
None

Response format
<INT>

Setting example
STAT:LOCK:NTR 16384

Query example
STAT:LOCK:NTR?

Response example
16384
4.2.1.15 Operate System Lock Condition Register: System Lock Transition Filter (Positive)
:STATus:LOCK:PTRansition

Description
Set/get the System Lock transition filter (positive)
For the System Lock transition filter, see **2.2.6.2**

Setting parameter

<value> ::= <INT>
<INT> → Register setting value: 0 to 65535

Query parameter

None

Response format

<INT>

Setting example

STAT:LOCK:PTR 16384

Query example

STAT:LOCK:PTR?

Response example

16384

4.2.1.16 Operate Operation Condition Register: Operation Condition Register
:STATus:OPERation:CONDition?

Description
Gets the operation condition register
For the operation condition register, see **2.2.5.1**

Query parameter

None

Response format

<INT>

Query example

STAT:OPER:COND?

Response example

16384
4.2.1.17 Operate Operation Condition Register: Operation Event Enable Register
:STATus:OPERation:ENABle

Description
Sets/gets the operation event enable register
For the operation event enable register, see 2.2.5.4

Setting parameter

<value> ::= <INT>

<INT> → Register setting value: 0 to 65535

Query parameter
None

Response format
<INT>

Setting example
STAT:OPER:ENAB 16384

Query example
STAT:OPER:ENAB?

Response example
16384

4.2.1.18 Operate Operation Condition Register: Operation Event Register
:STATus:OPERation[:EVENt]?

Description
Gets the operation event register
For the operation event register, see 2.2.5.3

Query parameter
None

Response format
<INT>

Query example
STAT:OPER?

Response example
16384
4.2.1.19 Operate Operation Condition Register: Operation Transition Filter (Negative)
:STATus:OPERation:NTRansition

Description
Sets/gets the operation transition filter (negative)
For the operation transition filter, see 2.2.5.2

Setting parameter
<value> ::= <INT>
<INT> → Register setting value: 0 to 65535

Query parameter
None

Response format
<INT>

Setting example
STAT:OPER:NTR 16384

Query example
STAT:OPER:NTR?

Response example
16384
4.2.1.20 Operate Operation Condition Register: Operation Transition Filter (Positive)

:STATus:OPERation:PTRansition

Description
Sets/gets the operation transition filter (positive)
For the operation transition filter, see 2.2.5.2

Setting parameter

\[<\text{value}> ::= <\text{INT}> \]
\[<\text{INT}> \rightarrow \text{Register setting value: 0 to 65535} \]

Query parameter
None

Response format

\[<\text{INT}> \]

Setting example

STAT:OPER:PTR 16384

Query example

STAT:OPER:PTR?

Response example

16384

4.2.1.21 Get Error Message: Get Error Message

:SYSTem:ERRor?

Description

Gets the error queue output
It returns the error ID and the error message in the order

Query parameter

None

Response format

\[<\text{INT}>,<\text{STR}> \]

Query example

SYST:ERR?

Response example

0,"No error"
4.2.1.22 Operate Warning Condition Register: Get Warning Condition Register
:STATus:WARNing:CONDition?

Description
Gets the warning condition register
For the warning condition register, see 2.2.5.6

Query parameter
None

Response format
<INT>

Query example
STAT:WARN:COND?
Response example
16384

4.2.1.23 Operate Warning Condition Register: Set/Get Warning Event Enable Register
:STATus:WARNing:ENABle

Description
Sets/gets the warning event enable register
For the warning event enable register, see 2.2.5.9

Setting parameter
<value> ::= <INT>

<INT> → Register setting value: 0 to 65535

Query parameter
None

Response format
<INT>

Setting example
STAT:WARN:ENAB 16384
Query example
STAT:WARN:ENAB?
Response example
16384
4.2.1.24 Operate Warning Condition Register: Get Warning Event Register
:STATus:WARNing[:EVENt]?

Description
Gets the warning event register
For the warning event register, see 2.2.5.8

Query parameter
None

Response format
<INT>

Query example
STAT:WARN?
Response example
16384

4.2.1.25 Operate Warning Condition Register: Set/Get Warning Transition Filter (Negative)
:STATus:WARNing:NTRansition

Description
Sets/gets the warning transition filter (negative)
For the warning transition filter, see 2.2.5.7

Setting parameter
=value> ::= <INT>

<INT> → Register setting value: 0 to 65535

Query parameter
None

Response format
<INT>

Setting example
STAT:WARN:NTR 16384
Query example
STAT:WARN:NTR?
Response example
16384
4.2.1.26 Operate Warning Condition Register: Set/Get Warning Transition Filter (Positive)
:STATus:WARNing:PTRansition

Description
Sets/get the warning transition filter (positive)
For the warning transition filter, see 2.2.5.7

Setting parameter
$value$::= $<\text{INT}>$

$<\text{INT}>$ → Register setting value: 0 to 65535

Query parameter
None

Response format
$<\text{INT}>$

Setting example
STAT:WARN:PTR 16384

Query example
STAT:WARN:PTR?

Response example
16384

4.2.1.27 Operate Warning Condition Register: Release Warning
:SYSTem:WRElease

Description
Sets the release of the warning

Setting parameter
None

Setting example
SYST:WREL

Remarks
The setting is ignored during the System Lock.
4.2.1.28 Output Control: Output On/Off
:OUTPut[:STATe]

Description
Sets/gets the output on/off

Setting parameter
\<state\> ::= \<BOL\>
\<BOL\> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
\<NBOL\>

Setting example
OUTP ON

Query example
OUTP?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.29 Output Control: Output at Power-On

:OUTPut:PON

Description
Sets/gets the output at power-on

Setting parameter
<state> ::= <BOL>

<BOL> ↓ 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
OUTP:PON ON

Query example
OUTP:PON?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.30 Output Control: Output Relay Control

:OUTPut:RELay

Description
Sets/gets the output relay control

Setting parameter

<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format

<NBOL>

Setting example
OUTP:REL ON

Query example
OUTP:REL?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.31 Output Control: Trigger Output Polarity

:TRIGger:POLarity

Description
Sets/gets the trigger output polarity

Setting parameter
<trig slope> ::= <DISC>
<DISC> ::= POSitive | NEGative
POSitive → Rising
NEGative → Falling

Query parameter
None

Response format
None

Setting example
TRIG:POL POSITIVE

Query example
TRIG:POL?

Response example
POS

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.32 Output Control: Trigger Output Pulse Width
:TRIGger:WIDTh

Description
Sets/gets the trigger output pulse width
The unit is millisecond (ms)

Setting parameter
<trig width> | MINimum | MAXimum
<trig width> ::= <REAL>
<REAL> → Trigger output pulse width: 0.1 to 10.0, Resolution 0.1
MINimum → 0.1
MAXimum → 10.0

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
TRIG:WIDT 0.5

Query example
TRIG:WIDT?

Response example
0.5

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.33 Device Configuration: Get Phase Configuration

:SYSTem:CONFigure:PHASe?

Description
 Gets the phase configuration

Query parameter
 None

Response format
 <INT> → 0: single-phase, 1: single-phase three-wire, 2: three-phase

Query example
 SYST:CONF:PHAS?

Response example
 0

Remarks
 The response message to the query is not returned during the System Lock.
4.2.1.34 Device Configuration: Output Function

:SYSTem:CONFigure[:MODE]

Description
Sets/gets the output function

Setting parameter

<system mode> ::= <DISC>

<DISC> ::= CONTinuous | SEQuence | SIMulation

- CONTinuous → Continuous
- SEQuence → Sequence
- SIMulation → Simulation

Query parameter

None

Response format

<DISC>

Setting example

SYST:CONF SIMULATION

Query example

SYST:CONF?

Response example

SIM

Remarks

The setting is ignored during the System Lock/warning.

The response message to the query is not returned during the System Lock.

The setting to the Sequence or Simulation cannot be done unless the Sequence or Simulation function option is enabled.

The setting cannot be done during the output on.

The setting cannot be done in the Sequence control state or Simulation control state.
4.2.1.35 Set Panel Display Operation: LCD Contrast Adjustment Value

`:DISP:CONTrast`

Description
Sets/gets the LCD contrast

Setting parameter

```plaintext
<contrast> | MINimum | MAXimum
<contrast> ::= <INT>
<INT> → LCD contrast: 0 to 99
MINimum → 0
MAXimum → 99
```

Query parameter

```
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value
```

Response format

```
<INT>
```

Setting example

```
DISP:CONT 55
```

Query example

```
DISP:CONT?
```

Response example

```
55
```

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.36 Set Panel Display Operation: LCD Display Color

:DISPlay[:WINDow]:BACKground:COLor

Description
Sets/gets the LCD display color

Setting parameter
<background color> ::= <DISC>
<DISC> ::= BLUE | WHITe

BLUE → Blue tone
WHITe → White tone

Query parameter
None

Response format
<DISC>

Setting example
DISP:BACK:COL WHIT

Query example
DISP:BACK:COL?

Response example
WHIT

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.37 Set Panel Display Operation: Key Lock
:SYSTem:KLOCk

Description
Sets/gets the key lock

Setting parameter
<state> ::= <BOL>
<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SYST:KLOC ON

Query example
SYST:KLOC?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.38 Set Panel Display Operation: Beep
:SYSTem:BEEPer:STATe

Description
Sets/gets the beep

Setting parameter

<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter

None

Response format

<NBOL>

Setting example

SYST:BEEP:STAT ON

Query example

SYST:BEEP:STAT?

Response example

1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.39 Get State of Power Unit: Get Number of Connected Power Units

:SYSTem:CONFigure:NPU[:STATe]?

Description

Gets the number of connected power units

It gets the number of connected power units for the L1, L2, and L3 phases.

The status of each phase is assigned for each bit as follows:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>Power unit No.8 connected</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Power unit No.5 connected</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Power unit No.4 connected</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power unit No.3 connected</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Power unit No.2 connected</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Power unit No.1 connected</td>
</tr>
</tbody>
</table>

Query parameter

None

Response format

<INT>,<INT>,<INT>

The response for the three phases is returned regardless of the phase configuration.

0 is returned to a missing phase.

Query example

SYST:CONF:NPU?

Response example

7,14,13 (L1 phase: No.1,2,3 connected, L2 phase: No.2,3,4 connected, L3 phase: No.1,3,4 connected)

Remarks

The response message to the query is not returned during the System Lock.
4.2.1.40 Get State of Power Unit: Get Number of Energizations

:SYSTem:CONFigure:NPU:ENABle?

Description

Gets the operating power unit

It gets the power unit energization setting for the L1, L2, and L3 phases.

The status of each phase is assigned for each bit as follows:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>Power unit No.8 power on</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Power unit No.5 power on</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Power unit No.4 power on</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power unit No.3 power on</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Power unit No.2 power on</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Power unit No.1 power on</td>
</tr>
</tbody>
</table>

Query parameter

None

Response format

<INT>,<INT>,<INT>

The response for the three phases is returned regardless of the phase configuration.

0 is returned to a missing phase.

Query example

SYST:CONF:NPU:ENAB?

Response example

3,0,0 (in the single-phase, L1 phase: No.1,2 operating)
3,3,0 (in the single-phase three-wire, L1 phase: No.1,2 and L2 phase: No.1,2 operating)
3,6,12 (in the three-phase, L1 phase: No.1,2, L2 phase: No.2,3, and L3 phase: No.3,4 operating)

Remarks

The response message to the query is not returned during the System Lock.
4.2.1.41 Get State of Power Unit: Get Error State

:SYSTem:CONFigure:NPU:ERRor?

Description

Gets the power unit in which an error occurs.

It gets the power unit in which an error occurs from the L1, L2, and L3 phases.

The status of each phase is assigned for each bit as follows:

If an error occurs in a power unit, the corresponding bit returns 1.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>Power unit No.8 error</td>
</tr>
<tr>
<td>:</td>
<td></td>
<td>:</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Power unit No.5 error</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Power unit No.4 error</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Power unit No.3 error</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Power unit No.2 error</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Power unit No.1 error</td>
</tr>
</tbody>
</table>

Query parameter

None

Response format

<INT>,<INT>,<INT>

The response for the three phases is returned regardless of the phase configuration.

0 is returned to a missing phase.

Query example

SYST:CONF:NPU:ERR?

Response example

0,1,3 (L1 phase: no error, L2 phase: No.1 error, L3 phase: No.1,2 errors)

Remarks

The response message to the query is not returned during the System Lock.
4.2.1.42 Set Monitor Output: Monitor Output
:OUTPut:MONitor:MODE

Description
Sets/gets the monitor output

Setting parameter
<state> ::= <DISC>

<DISC> ::= CURRent | VOLTage

CURRent → Current monitor output mode
VOLTage → Voltage monitor output mode

Query parameter
None

Response format
<DISC>

Setting example
OUTP:MON:MODE CURR

Query example
OUTP:MON:MODE?

Response example
CURR

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.1.43 Set Monitor Output: Specify Output Phase (Phase Number)

:OUTPut:INSTRument:NSELect

Description
Sets/gets the monitor output phase setting (phase number)

Setting parameter

<phase number> | MINimum | MAXimum

<phase number> ::= <INT>

<INT> → Phase number: 0 to 2

0: L1 phase | 1: L2 phase | 2: L3 phase

MINimum → 0

MAXimum → 2

Query parameter

[MINimum | MAXimum]

MINimum → Gets the minimum value

MAXimum → Gets the maximum value

Response format

<INT>

Setting example

OUTP:INST:NSEL 1

Query example

OUTP:INST:NSEL?

Response example

1

Remarks

The setting is ignored during the System Lock/warning.

The response message to the query is not returned during the System Lock.
4.2.1.44 Set Monitor Output: Specify Output Phase (Phase)

:OUTPut:INSTRument:SELection

Description
Sets/gets the monitor output phase setting (phase)

Setting parameter
<phase name> ::= <DISC>
<DISC> ::= L1 | L2 | L3
L1 → L1 phase, L2 → L2 phase, L3 → L3 phase

Query parameter
None

Response format
<DISC>

Setting example
OUTP:INST:SEL L1

Query example
OUTP:INST:SEL?

Response example
L1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2 Continuous Function Commands

4.2.2.1 Common Command (IEEE488.2): Initialize Basic Setting
*RST

Description
Initializes the setting

Setting parameter
None

Setting example
*RST

Remarks
The command is ignored during the System Lock/warning.
The operation cannot be done in the Sequence control state or Simulation control state.
The operation cannot be done during the output on.

4.2.2.2 Common Command (IEEE488.2): Select and Set Basic Setting
*RCL

Description
Recalls from the setting memory

Setting parameter
<meomory> ::= <INT>

<INT> → Basic Setting Memory number: 0-30

Setting example
*R CL 8

Remarks
The command is ignored during the System Lock/warning.
The operation cannot be done in the Sequence control state or Simulation control state.
The operation cannot be done during the output on.
4.2.2.3 Common Command (IEEE488.2): Store Basic Setting

*SAV

Description
Stores to the setting memory

Setting parameter

<memory> ::= <INT>

<INT> → Basic Setting Memory number: 1 to 30

Setting example

*SAV 8

Remarks
The command is ignored during the System Lock/warning.
The operation cannot be done in the Sequence control state or Simulation control state.
The operation cannot be done during the output on.

4.2.2.4 Panel Display Setting: Set/Get Normal View/Simple View Mode

:DISPlay[:WINDow]:DESign:MODE

Description
Sets/gets the Normal View/Simple View selection

Setting parameter

<design mode> ::= <DISC>

<DISC> ::= NORMal | SIMPle

NORMal → Normal View
SIMPle → Simple View

Query parameter
None

Response format

<DISC>

Setting example

DISP:DES:MODE NORM

Query example

DISP:DES:MODE?

Response example

NORM

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.5 Panel Display Setting: Set/Get Display Items at Simple View
:DISPlay[:WINDow]:DESign:SIMPlE:ITEM

Description
Set/get the display items at Simple View

Setting parameter
\{<no> | MINimum | MAXimum\},<item>

\<no\> ::= \<INT\>
\<INT\> ::= Item number: 1 to 3
MINimum → 1
MAXimum → 3

\<item\> ::= \<DISC\>
\<DISC\> ::= V | I | VAVE | IAVE | VMAX | VMIN | IMAX | IMIN | IPKH | F | P | S | Q | PF | CF

V → Voltage effective value
(can be set when RMS is selected for the measurement display)

I → Current effective value (can be set when RMS is selected for the measurement display)

VAVE → Voltage average value (can be set when AVG is selected for the measurement display)
(cannot be set at polyphase)

IAVE → Current average value (can be set when AVG is selected for the measurement display)
(cannot be set at polyphase)

VMAX → Voltage maximum peak value
(can be set when PEAK is selected for the measurement display)

VMIN → Voltage minimum peak value
(can be set when PEAK is selected for the measurement display)

IMAX → Current maximum peak value
(can be set when PEAK is selected for the measurement display)

IMIN → Current minimum peak value
(can be set when PEAK is selected for the measurement display)

IPKH → Output Current Peak-Hold Value

F → AC frequency (can be set at SYNC mode)

P → Active power

S → Apparent power (can be set at AC or ACDC mode)

Q → Reactive power (can be set at AC or ACDC mode)
PF → Load power factor (can be set at AC or ACDC mode)

CF → Load crest factor
 (can be set at AC or ACDC mode)

Query parameter

<no> | MINimum | MAXimum
<no> ::= <INT>

<INT> ::= Item number: 1 to 3

MINimum → 1
MAXimum → 3

Response format

<DISC>

Setting example

DISP:DES:SIMP:ITEM 1,V

Query example

DISP:DES:MODE? 1

Response example

V

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
Reactive power, load power factor, and load crest factor are optional functions for the AGC and extended measurement.
4.2.2.6 Panel Display Setting: Measurement Display Phase Setting (Phase Number)

:DISPlay[:WINDow]:INSTrument:NSELect

Description
Sets/gets the measurement display phase setting (phase number)
Switches the measurement display phase displayed in the LCD

Setting parameter

\(<\text{phase number}> | \text{MINimum} | \text{MAXimum}\)

\(<\text{phase number}> ::= <\text{INT}>\)

\(<\text{INT}> \rightarrow \text{Phase number: 0 to 5}\)

0: L1 phase | 1: L2 phase | 2: L3 phase |
3: L1-L2 line | 4: L2-L3 line | 5: L3-L1 line

MINimum \rightarrow 0
MAXimum \rightarrow 5

Query parameter

\([\text{MINimum} | \text{MAXimum}]\)

MINimum \rightarrow Gets the minimum value
MAXimum \rightarrow Gets the maximum value

Response format

\(<\text{INT}>\)

Setting example

DISP:INST:NSEL 1

Query example

DISP:INST:NSEL?

Response example

1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
For single-phase, only 0 can be set.
For single-phase three-wire, 0, 1, and 3 can be set.
4.2.2.7 Panel Display Setting: Measurement Display Phase Setting (Phase)
:DISPlay[:WINDow]:INStrument:SELect

Description
Sets/gets the measurement display phase setting (phase)
Switches the measurement phase displayed in the LCD

Setting parameter

<phase name> ::= <DISC>

<DISC> ::= L1 | L2 | L3 | L12 | L23 | L31
 L1 → L1 phase
 L2 → L2 phase
 L3 → L3 phase
 L12 → L1-L2 line
 L23 → L2-L3 line
 L31 → L3-L1 line

Query parameter
None

Response format
<DISC>

Setting example
 DISP:INST:SEL L1

Query example
 DISP:INST:SEL?

Response example
 L1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
For single-phase, only L1 can be set.
For single-phase three-wire, L1, L2, and L12 can be set.
4.2.2.8 Panel Display Setting: Set/Get Measurement Display Selection

:DISPlay[:WINDow]:MEASure:MODE

Description
Sets/gets the measurement display selection
It sets the measurement phase displayed during the Continuous, Sequence control, and Simulation control.

Setting parameter

<disp meas mode> ::= <DISC>

<DISC> ::= RMS | AVG | PEAK | HC1 | HC2 | HC3 | HC4

- **RMS** → Effective value
- **AVG** → Average value
- **PEAK** → Peak value
- **HC1** → Harmonic current 1
- **HC2** → Harmonic current 2
- **HC3** → Harmonic current 3
- **HC4** → Harmonic current 4

Query parameter
None

Response format
<DISC>

Setting example

DISP:MEAS:MODE RMS

Query example

DISP:MEAS:MODE?

Response example

RMS

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The harmonic currents 1 to 4 have the optional functions for the AGC and extended measurement, which can be set at the Continuous.
4.2.2.9 Output Setting (for All Phases): Set/Get Output Range

[::SOURce]:VOLTage:RANGe

Description
Set/get the output range

Setting parameter
<volt range> ::= <DISC>
<DISC> ::= R100V | R200V
 R100V → 100V range
 R200V → 200V range

Query parameter
None

Response format
<DISC>

Setting example
VOLT:RANG R100V

Query example
VOLT:RANG?

Response example
R100V

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence control state or Simulation control state.
The setting cannot be done during the output on.
4.2.2.10 Output Setting (for All Phases): Set Operation Mode

[:SOURce]:MODE

Description
Sets/gets the operation mode

Setting parameter

\[\langle \text{mode} \rangle ::= \langle \text{DISC} \rangle \]

\[\langle \text{DISC} \rangle ::= \text{AC_INT} | \text{AC_VCA} | \text{AC_SYNC} | \text{AC_EXT} | \text{AC_ADD} | \text{DC_INT} | \text{DC_VCA} | \text{DC_EXT} | \text{AC_ADD} | \text{ACDC_INT} | \text{ACDC_SYNC} | \text{ACDC_EXT} | \text{ACDC_ADD} \]

- \text{AC_INT} \rightarrow \text{AC_INT} mode
- \text{AC_VCA} \rightarrow \text{AC_VCA} mode
- \text{AC_SYNC} \rightarrow \text{AC_SYNC} mode
- \text{AC_EXT} \rightarrow \text{AC_EXT} mode
- \text{AC_ADD} \rightarrow \text{AC_ADD} mode
- \text{DC_INT} \rightarrow \text{DC_INT} mode
- \text{DC_VCA} \rightarrow \text{DC_VCA} mode
- \text{ACDC_INT} \rightarrow \text{ACDC_INT} mode
- \text{ACDC_SYNC} \rightarrow \text{ACDC_SYNC} mode
- \text{ACDC_EXT} \rightarrow \text{ACDC_EXT} mode
- \text{ACDC_ADD} \rightarrow \text{ACDC_ADD} mode

(* EXT and ADD are optional)

The following table describes which operation mode can be set for each system.

<table>
<thead>
<tr>
<th>AC/DC mode</th>
<th>Signal source</th>
<th>Single-phase</th>
<th>Single-phase three-wire</th>
<th>Three-phase</th>
<th>Polyphase connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>INT</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>VCA</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>SYNC</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>EXT</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>ADD</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>DC</td>
<td>INT</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>VCA</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>SYNC</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>EXT</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>ADD</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>ACDC</td>
<td>INT</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>VCA</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>SYNC</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>EXT</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>ADD</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

○: Can be set, ×: Cannot be set

Query parameter
None

Response format

\[\langle \text{DISC} \rangle \]
Setting example
 MODE ACDC_INT
Query example
 MODE?
Response example
 ACDC_INT
Remarks
 The setting is ignored during the System Lock/warning.
 The response message to the query is not returned during the System Lock.
 When the output function is the Sequence, only INT can be selected as the signal source.
 When the output function is the Simulation, only the ACDC-INT mode can be selected as the operation mode.

4.2.2.11 Output Setting (for All Phases): Set/Get Output Frequency
 [:SOURce]:FREQuency[:IMMediate]

Description
 Sets/gets the output frequency

Setting parameter
 <frequency> | MINimum | MAXimum
 <frequency> ::= <REAL>
 <REAL> \rightarrow Frequency: 40.0 (AC-INT)/1.0 (other than AC-INT) to 550.0, Resolution 0.1
 MINimum \rightarrow 40.0 (AC-INT)/1.0 (other than AC-INT)
 MAXimum \rightarrow 550.0

Query parameter
 [MINimum | MAXimum]
 MINimum \rightarrow Gets the minimum value
 MAXimum \rightarrow Gets the maximum value

Response format
 <NR2>
Setting example
 FREQ 50
Query example
 FREQ?
Response example
 50.0
Remarks
 The setting is ignored during the System Lock/warning.
 The response message to the query is not returned during the System Lock.
 The setting cannot be done in the Sequence and Simulation.
 The setting can be made only in the AC-INT, AC-VCA, AC-ADD, ACDC-INT, and ACDC-ADD modes.
4.2.2.12 Output Setting (for All Phases): Set Output On Phase
[:SOURce]:PHASE:STAR[:IMMediate]

Description
Sets/get the output on phase

Setting parameter
<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
PHAS:STAR 90

Query example
PHAS:STAR?

Response example
90.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
The setting cannot be done in the AC-EXT, ACDC-EXT, DC-INT, and DC-VCA modes.
4.2.2.13 Output Setting (for All Phases): Enable/Disable Output Off Phase Specification

[SOURce]:PHASe:STOP:ENABle

Description
Sets/gets whether to enable/disable the output off phase

Setting parameter
<state> ::= <BOL>
<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
PHAS:STOP:ENAB ON

Query example
PHAS:STOP:ENAB?

Response example
1

Remarks
The setting is ignored during the System Lock/normal.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
The setting cannot be done in the AC-EXT, ACDC-EXT, DC-INT, and DC-VCA modes.
4.2.2.14 Output Setting (for All Phases): Set Output Off Phase
[:SOURce]:PHASe:STOP[:IMMediate]

Description
Sets/gets the output off phase

Setting parameter
<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
PHAS:STOP 90

Query example
PHAS:STOP?

Response example
90.0

Remarks
The setting is ignored during the System Lock.warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
The setting cannot be done in the AC-EXT, ACDC-EXT, DC-INT, and DC-VCA modes.
4.2.2.15 Output Setting (for All Phases): Set/Get Balanced/Unbalanced Mode

[:SOURce]:PHASe:MODE

Description
Sets/gets the balanced mode

Setting parameter

\[\langle\text{mode}\rangle ::= \langle\text{DISC}\rangle\]

- BALance → Balanced mode
- UNBalance → Unbalanced mode

Query parameter
None

Response format

\(<\text{DISC}>\)

Setting example

PHAS:MODE BAL

Query example

PHAS:MODE?

Response example

BAL

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the single-phase.
4.2.2.16 Output Setting (for All Phases): Set Remote Sensing Function
:MEASure:CONFigure:SENSing

Description
Sets/gets the remote sensing

Setting parameter
\(<\text{state}> ::= <\text{BOL}>\)
\(<\text{BOL}> \rightarrow 0/\text{OFF}: \text{Disable}, 1/\text{ON}: \text{Enable}\)

Query parameter
None

Response format
\(<\text{NBOL}>\)

Setting example
MEAS:CONF:SENS ON

Query example
MEAS:CONF:SENS?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The remote sensing can be set only when the waveform is a sine wave for the AC mode in the
AC-INT, AC-VCA, AC-SYNC, DC-INT, and DC-VCA modes.
When the Sequence or Simulation function is selected, the remote sensing is forcibly set to off.
4.2.2.17 Output Setting (for Specific Phase): Specify Phase To Set (Phase Number)

:INSTrument:NSELect

Description
Sets/gets the output phase setting (phase number)
It specifies the phase to set/get by the SOURce subsystem command.
It does not affect the phase specification by the SOURce:SEQUence subsystem.

Setting parameter
<phase number> | MINimum | MAXimum
<phase number> ::= <INT>
<INT> → Phase number: 0 to 4
 0: All phases at once | 1: L1 phase | 2: L2 phase | 3: L3 phase | 4: Line
MINimum → 0
MAXimum → 4

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
INST:NSEL 1

Query example
INST:NSEL?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
For single-phase, only 0 and 1 can be set.
For single-phase three-wire, 0, 1, 2, and 4 can be set.
4.2.2.18 Output Setting (for Specific Phase): Specify Phase To Set (Phase)

:INSTrument:SELect

Description
Sets/gets the output phase setting (phase)
It specifies the phase to set/get by the SOURce subsystem command.
It does not affect the phase specification by the SOURce:SEQuence subsystem.

Setting parameter

<phase name> ::= <DISC>

<DISC> ::= ALL | L1 | L2 | L3 | LINE

ALL → All phases at once
L1 → L1 phase, L2 → L2 phase, L3 → L3 phase
LINE → Line

Query parameter

None

Response format

<DISC>

Setting example

INST:SEL L1

Query example

INST:SEL?

Response example

L1

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
For single-phase, only ALL and L1 can be set.
For single-phase three-wire, ALL, L1, L2, and LINE can be set.
4.2.2.19 Output Setting (for Specific Phase): Set/Get AC Output Voltage

[:SOURce]:VOLTage[:LEVel][:IMMediate][:AMPLitude]

Description
Sets/gets the AC output voltage

Setting parameter
<volt> | MINimum | MAXimum
<volt> ::= <REAL>
<REAL> → AC output voltage
MINimum → Minimum value
MAXimum → Maximum value
For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
VOLT 100

Query example
VOLT?

Response example
100.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.20 Output Setting (for Specific Phase): Set/Get DC Output Voltage

[:SOURce]:VOLTage[:LEVel][:IMMediate]:OFFSet

Description
Sets/gets the DC output voltage

Setting parameter

<volt offs> | MINimum | MAXimum
<volt offs> ::= <REAL>
REAL → DC output voltage
MINimum → Minimum value
MAXimum → Maximum value

For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

VOLT:OFFS 10

Query example

VOLT:OFFS?

Response example

10.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.21 Output Setting (for Specific Phase): Select Output Waveform

[:SOURce]:FUNCTION[:SHAPe][:IMMediate]

Description
Sets/gets the output waveform

Setting parameter
<func shap> ::= <DISC>

<DISC> ::= SIN | ARB1 | ARB2 | ARB3 | ARB4 | ARB5 | ARB6 | ARB7 | ARB8 |
ARB9 | ARB10 | ARB11 | ARB12 | ARB13 | ARB14 | ARB15 | ARB16 |
CLP1 | CLP2 | CLP3

SIN → Sine wave
ARB1 → Arbitrary wave 1
ARB2 → Arbitrary wave 2
ARB3 → Arbitrary wave 3
ARB4 → Arbitrary wave 4
ARB5 → Arbitrary wave 5
ARB6 → Arbitrary wave 6
ARB7 → Arbitrary wave 7
ARB8 → Arbitrary wave 8
ARB9 → Arbitrary wave 9
ARB10 → Arbitrary wave 10
ARB11 → Arbitrary wave 11
ARB12 → Arbitrary wave 12
ARB13 → Arbitrary wave 13
ARB14 → Arbitrary wave 14
ARB15 → Arbitrary wave 15
ARB16 → Arbitrary wave 16
CLP1 → Clipped sine wave 1
CLP2 → Clipped sine wave 2
CLP3 → Clipped sine wave 3

Query parameter
None

Response format
<DISC>

Setting example
FUNC SIN

Query example
FUNC?

Response example
SIN

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.22 Output Setting (for Specific Phase): Set/Get Phase Angle at Polyphase Model/Polyphase System

[:SOURce]:PHASe:PHASE

Description
Sets/gets the phase angle

Setting parameter

<target>,{<phase> | MINimum | MAXimum}

<target> ::= <DISC>

L12 → Phase angle between L1-L2
L13 → Phase angle between L1-L3

<phase> ::= <REAL>

<REAL> → Phase angle: Default value ± 35.0, Resolution 0.1
For the single-phase three-wire
L12 default value: 180.0deg
For the three-phase
L12 default value: 120.0 deg, L13 default value: 240.0deg

MINimum → Minimum value
MAXimum → Maximum value

Query parameter

<target>, [MINimum | MAXimum]

<target> ::= <DISC>

L12 → Phase angle between L1-L2
L13 → Phase angle between L1-L3

MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

PHAS:PHAS L12,125

Query example

PHAS:PHAS? L12

Response example

125.0

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the single-phase.
The phase angle between L1-L3 cannot be set in the single-phase three-wire.
4.2.2.23 Output Setting (for Specific Phase): Set DC Offset Voltage Adjustment Value (AC mode)
[:SOURce]:VOLTage:ADJJust:OFFSet:AC

Description
Sets/gets the DC offset voltage adjustment value [mV] in the AC mode

Setting parameter
<adjust voltage> | MINimum | MAXimum
<adjust voltage> ::= <REAL>
<REAL> → Voltage adjustment value:-50.0 to 50.0, Resolution 0.1
MINimum → -50.0
MAXimum → 50.0

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
VOLT:ADJ:OFF:AC 10

Query example
VOLT:ADJ:OFF:AC?

Response example
10.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.24 Output Setting (for Specific Phase): Set DC Offset Voltage Adjustment Value (ACDC and DC modes)

[:SOURce]:VOLTage:ADJust:OFFSet:DC

Description
Sets/gets the DC offset voltage adjustment value [mV] in the ACDC and DC modes

Setting parameter
<adjust voltage> | MINimum | MAXimum
<adjust voltage> ::= <INT>

<INT> → Voltage adjustment value:-250 to 250, Resolution 1
MINimum → -250
MAXimum → 250

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
VOLT:ADJ:OFFS:DC 10

Query example
VOLT:ADJ:OFFS:DC?

Response example
10

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.25 Set Output Voltage Limit: Voltage Limit (Effective Value)
[:SOURce]:VOLTage:LIMit:RMS

Description
Sets/gets the effective voltage setting range limit (effective value)

Setting parameter
<volt lim low> | MINimum | MAXimum
<volt lim low> ::= <REAL>
<REAL> → Voltage upper limit value
MINimum → Minimum value
MAXimum → Maximum value

For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter
[MInimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
VOLT:LIM:RMS 100

Query example
VOLT:LIM:RMS?

Response example
100.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.26 Set Output Voltage Limit: Voltage Limit (Peak Value <Maximum>)

[:SOURce]:VOLTage:LIMit:HIGH

Description
Sets/gets the voltage setting range limit (peak value <maximum>)

Setting parameter

<volt lim high> | MINimum | MAXimum
<volt lim high> ::= <REAL>

<REAL> → Output voltage upper limit
MINimum → Minimum value
MAXimum → Maximum value

For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter

[MINimum | MAXimum]

MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

VOLT:LIM:HIGH 200

Query example

VOLT:LIM:HIGH?

Response example

200.0

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.27 Set Output Voltage Limit: Voltage Limit (Peak Value <Minimum>)
[:SOURce]:VOLTage:LIMit:LOW

Description
Sets/gets the voltage setting range limit (peak value <minimum>)

Setting parameter
<volt lim low> | MINimum | MAXimum
<volt lim low> ::= <REAL> → Output voltage lower limit
MINimum → Minimum value
MAXimum → Maximum value
For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
VOLT:LIM:LOW -200

Query example
VOLT:LIM:LOW?

Response example
-200.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.28 Set Output Current Limit: Set Current Limit (Effective Value)
[:SOURce]:CURRent:LIMit:RMS[:AMPLitude]

Description
Sets/gets the current effective value [Arms] limiter

Setting parameter
<cur lim rms> | MINimum | MAXimum
<cur lim rms> ::= <REAL>
<REAL> → Output current effective value
MINimum → Minimum value
MAXimum → Maximum value
For the setting value range, maximum value, minimum value, and
resolution, see the instruction manual of the main unit.

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
CURR:LIM:RMS 5

Query example
CURR:LIM:RMS?

Response example
5.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.29 Set Output Current Limit: Set Output OFF at Current Limit (Effective Value) Detection

[:SOURce]:CURRent:LIMit:RMS:MODE

Description
Sets/gets the output off after the RMS current limiter is activated.

Setting parameter
\(<\text{cur lim mode}> ::= \langle\text{DISC}\rangle\)

\(<\text{DISC}> ::= \text{CONTinuous} \mid \text{OFF}\)

- **CONTinuous** → Continuous operation, output off disabled
- **OFF** → Output off enabled

Query parameter
None

Response format
\(<\text{DISC}>\)

Setting example
CURR:LIM:RMS:MODE OFF

Query example
CURR:LIM:RMS:MODE?

Response example
OFF

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.30 Set Output Current Limit: Set Time Before Turning Output OFF After Current Limit (Effective Value) is Detected
[:SOURce]:CURRent:LIMit:RMS:TIME

Description
Sets/gets the time [s] before turning the output off after the RMS current limiter is activated

Setting parameter
<cur lim time> | MINimum | MAXimum
<cur lim time> ::= <INT>
<INT> → Limiter time: 1 to 10
MINimum → 1
MAXimum → 10

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
CURR:LIM:RMS:TIME 5

Query example
CURR:LIM:RMS:TIME?

Response example
5

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
Set Output Current Limit: Set Current Limit (Peak Value <Maximum>)

[:SOURce]:CURRent:LIMit:PEAK:HIGH

Description
Sets/gets the peak current limiter (positive) [A]

Setting parameter
<cur lim peak high> | MINimum | MAXimum
<cur lim peak high> ::= <REAL>
<REAL> → Peak current limiter (positive) setting value
MINimum → Minimum value
MAXimum → Maximum value

For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
CURR:LIM:PEAK:HIGH 10

Query example
CURR:LIM:PEAK:HIGH?

Response example
10.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.32 Set Output Current Limit: Set Current Limit (Peak Value <Minimum>)

[:SOURce]:CURRent:LIMit:PEAK:LOW

Description

Sets/gets the peak current limiter (negative) [A]

Setting parameter

<cur lim peak low> | MINimum | MAXimum
<cur lim peak low> ::= <REAL>

<REAL> → Peak current limiter (negative) setting value

MINimum → Minimum value
MAXimum → Maximum value

For the setting value range, maximum value, minimum value, and resolution, see the instruction manual of the main unit.

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

CURR:LIM:PEAK:LOW -10

Query example

CURR:LIM:PEAK:LOW?

Response example

-10.0

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.33 Set Output Current Limit: Set Output OFF at Current Limit (Peak Value) Detection
[:SOURce]:CURRent:LIMit:PEAK:MODE

Description
Sets/gets the output off after the peak current limiter is activated

Setting parameter
<cur lim mode> ::= <DISC>
<DISC> ::= CONTinuous | OFF
CONTinuous → Continuous operation, output off disabled
OFF → Output off enabled

Query parameter
None

Response format
<DISC>

Setting example
CURR:LIM:PEAK:MODE OFF

Query example
CURR:LIM:PEAK:MODE?

Response example
OFF

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.34 Set Output Current Limit: Time Before Turning Output OFF After Current Limit (Peak Value) is Detected

`:SOURce`:CURRent:LIMit:PEAK:TIME

Description
Sets/gets the time [s] before turning the output off after the peak current limiter is activated

Setting parameter

<cur lim time> | MINimum | MAXimum
<cur lim time> ::= <INT>

<INT> → Limiter time: 1 to 10
MINimum → 1
MAXimum → 10

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<INT>

Setting example

CURR:LIM:PEAK:TIME 5

Query example

CURR:LIM:PEAK:TIME?

Response example

5

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.35 Set Output Frequency Setting Range Limit: Set Upper Limit Value of Frequency Limit

[:SOURce]:FREQuency:LIMit:HIGH

Description
Sets/gets the upper limit value [Hz] of the frequency setting range limit

Setting parameter

<frequency> | MINimum | MAXimum

<frequency> ::= <REAL>

<REAL> → Frequency: 40.0 (AC-INT)/1.0 (other than AC-INT) to 550.0, Resolution 0.1

MINimum → 40.0 (AC-INT)/1.0 (other than AC-INT)

MAXimum → 550.0

Query parameter

[MINimum | MAXimum]

MINimum → Gets the minimum value

MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

FREQ:LIM:HIGH 60

Query example

FREQ:LIM:HIGH?

Response example

60.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
The setting can be made only in the AC-INT, AC-VCA, AC-ADD, ACDC-INT, and ACDC-ADD modes.
4.2.2.36 Set Output Frequency Setting Range Limit: Set Lower Limit Value of Frequency Limit
[:SOURce]:FREQuency:LIMit:LOW

Description
Sets/gets the lower limit value [Hz] of the frequency setting range limit

Setting parameter

<frequency> | MINimum | MAXimum

<frequency> ::= <REAL>

<REAL> → 40.0 (AC-INT)/1.0 (other than AC-INT) to 550.0, Resolution 0.1

MINimum → 40.0 (AC-INT)/1.0 (other than AC-INT)
MAXimum → 550.0

Query parameter

[MINimum | MAXimum]

MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

FREQ:LIM:LOW 40

Query example

FREQ:LIM:LOW?

Response example

40.0

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
The setting can be made only in the AC-INT, AC-VCA, AC-ADD, ACDC-INT, and ACDC-ADD modes.
4.2.2.37 Get Output Measured Value: Clear Current Peak-Hold Value

:MEASure[:SCAlar]:CURRent:PEAK:CLEar

Description
Cleans the current peak-hold value

Setting parameter
None

Setting example
MEAS:CURR:PEAK:CLE

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.

4.2.2.38 Get Output Measured Value: Get Current Peak-Hold Value

:MEASure[:SCAlar]:CURRent:PEAK:HOLD?

Description
Gets the current peak-hold value [Apk]

Query parameter
None

Response format

- `<NR2>` → Query response range
 - For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:CURR:PEAK:HOLD?

Response example
26.55

Remarks
The response message to the query is not returned during the System Lock.
4.2.2.39 Get Output Measured Value: Get Synchronization Signal Source Frequency
:MEASure[:SCALar]:FREQuency?

Description
Gets the synchronization signal source frequency [Hz]
If the measured value exceeds the response range, 999.9 is returned as a measurement error

Query parameter
None

Response format
<NR2> Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:FREQ?

Response example
50.4

Remarks
The response message to the query is not returned during the System Lock.
4.2.2.40 Get Output Measured Value (for Specific Phase): Specify Measurement Query Phase (Phase Number)
:MEASure:INSTrument:NSELect

Description
Sets/gets the measurement query phase (phase number)
It specifies the phase to query the measured value for by the MEASure subsystem command.
* This command does not affect the measured value display phase displayed in the LCD.

Setting parameter

- `<phase number>` | MINimum | MAXimum
- `<phase number>` ::= <INT>
- `<INT>` → Phase number: 0 to 5
 1: L1 phase | 2: L2 phase | 3: L3 phase |
 4: L1-L2 line | 5: L2-L3 line | 6: L3-L1 line
- MINimum → 0
- MAXimum → 5

Query parameter

- [MINimum | MAXimum]
 MINimum → Gets the minimum value
 MAXimum → Gets the maximum value

Response format

- `<INT>`

Setting example

MEAS:INST:NSEL 1

Query example

MEAS:INST:NSEL?

Response example

1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
For single-phase, only 0 can be set.
For single-phase three-wire, 0, 1, and 3 can be set.
4.2.2.41 Get Output Measured Value (for Specific Phase): Specify Measurement Query Phase (Phase) :MEASURE:INSTRUMENT:SELECT

Description
Sets/gets the measurement query phase (phase)
It specifies the phase to query the measured value for by the MEASURE subsystem command.
* This command does not affect the measured value display phase displayed in the LCD.

Setting parameter

\[
\text{\langle phase name\rangle ::= \langle DISC\rangle}
\]

\[
\text{\langle DISC\rangle ::= L1 | L2 | L3 | L12 | L23 | L31}
\]

L1 → L1 phase, L2 → L2 phase, L3 → L3 phase
L12 → L1-L2 line, L23 → L2-L3 line, L31 → L3-L1 line

Query parameter

None

Response format

\[
\text{\langle DISC\rangle}
\]

Setting example

MEASURE:INSTRUMENT:SELECT L1

Query example

MEASURE:INSTRUMENT:SELECT?

Response example

L1

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
For single-phase, only L1 can be set.
For single-phase three-wire, L1, L2, and L12 can be set.
4.2.2.42 Get Output Measured Value (for Specific Phase): Output Voltage (Effective Value)
:MEASure[:SCALar]:VOLTage[:RMS]?

Description
Gets the output voltage effective value [V_{rms}]

Query parameter
None

Response format
<NR2>→ Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:VOLT?

Response example
100.4

Remarks
The response message to the query is not returned during the System Lock.

4.2.2.43 Get Output Measured Value (for Specific Phase): Output Voltage (Average Value)
:MEASure[:SCALar]:VOLTage:AVErage?

Description
Gets the output voltage average value [V]

Query parameter
None

Response format
<NR2>→ Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:VOLT:AVE?

Response example
100.0

Remarks
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.
4.2.2.44 Get Output Measured Value (for Specific Phase): Output Voltage (Peak Value <Maximum>)

:MEASure[:SCALar]:VOLTage:HIGH?

Description
Gets the voltage maximum value [Vpk]

Query parameter
None

Response format
Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:VOLT:HIGH?

Response example
141.4

Remarks
The response message to the query is not returned during the System Lock.

4.2.2.45 Get Output Measured Value (for Specific Phase): Output Voltage (Peak Value <Minimum>)

:MEASure[:SCALar]:VOLTage:LOW?

Description
Gets the voltage minimum value [Vpk]

Query parameter
None

Response format
Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:VOLT:LOW?

Response example
-141.4

Remarks
The response message to the query is not returned during the System Lock.
4.2.2.46 Get Output Measured Value (for Specific Phase): Output Current (Effective Value)
:MEASure[:SCALar]:CURRent[:RMS]?

Description

Gets the output current effective value [Arms]

Query parameter

None

Response format

\(<NR2>\rightarrow\) Query response range

For the query response range and resolution, see the instruction manual of the main unit.

Query example

MEAS:CURR?

Response example

12.75

Remarks

The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.

4.2.2.47 Get Output Measured Value (for Specific Phase): Output Current (Average)
:MEASure[:SCALar]:CURRent:AVErage?

Description

Gets the output current average value [A]

Query parameter

None

Response format

\(<NR2>\rightarrow\) Query response range

For the query response range and resolution, see the instruction manual of the main unit.

Query example

MEAS:CURR:AVE?

Response example

1.20

Remarks

The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.
4.2.2.48 Get Output Measured Value (for Specific Phase): Output Current (Peak Value <Maximum>)
:MEASure[:SCALar]:CURRent:HIGH?

Description
Gets the output current maximum peak value [Apk]

Query parameter
None

Response format
<NR2>→ Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:CURR:HIGH?

Response example
30.0

Remarks
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.

4.2.2.49 Get Output Measured Value (for Specific Phase): Output Current (Peak Value <Minimum>)
:MEASure[:SCALar]:CURRent:LOW?

Description
Gets the output current minimum peak value [Apk]

Query parameter
None

Response format
<NR2>→ Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:CURR:LOW?

Response example
-30.0
Get Output Measured Value (for Specific Phase): Control Harmonic Measurement Function
:MEASure[:SCALar]:CURRent:HARMonic:ENABle

Description
Sets/gets whether to enable/disable the harmonic measurement
Set to enable it before querying the harmonic current. You do not have to disable it after querying the harmonic current. It is automatically disabled when the harmonic measurement cannot be performed.

Setting parameter
\[\text{<state> ::= <BOL>} \]
\[\text{<BOL> \rightarrow 0/OFF: Disable, 1/ON: Enable} \]

Query parameter
None

Response format
\[\text{<NBOL>} \]

Setting example
MEAS:CURR:HARM:ENAB ON

Query example
MEAS:CURR:HARM:ENAB?

Response example
1

Remarks
The setting/query can be made only when the AGC and extended measurement options are enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.51 Get Output Measured Value (for Specific Phase): Get Harmonic Current Value
:MEASure[:SCALar]:CURRent:HARMonic[:RMS]?

Description
Gets the harmonic current [Arms]

Query parameter
< page > ::= <INT> | MINimum | MAXimum
 <INT> → Page: 1 to 4
 1 (order 1 to 10) | 2 (order 11 to 20) | 3 (order 21 to 30) | 4 (order 31 to 40)
 MINimum → 1
 MAXimum → 4

Response format
<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>
 → Query response range

For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:CURR:HARM? 1

Response example
2.24,0.02,0.01,0.15,0.06,0.08,0.01,0.01,0.02,0.06

Remarks
The query can be made only when the AGC and extended measurement options are enabled.
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.
4.2.2.52 Get Output Measured Value (for Specific Phase): Get Harmonic Current Percentage
:MEASure[:SCALar]:CURRent:HARMonic:RATio?

Description
Gets the harmonic current percentage [%]

Query parameter
< page > ::= <INT> | MINimum | MAXimum

<INT> → Page: 1 to 4
1 (order 1 to 10) | 2 (order 11 to 20) | 3 (order 21 to 30) | 4 (order 31 to 40)
MINimum → 1
MAXimum → 4

Response format
<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>,<NR2>
→ Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:CURR:HARM:RAT? 1

Response example
100.0,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

Remarks
The query can be made only when the AGC and extended measurement options are enabled.
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.
4.2.2.53 Get Output Measured Value (for Specific Phase): Get Output Current Crest Factor
:MEASure[:SCALar]:CURRent:CFACtor?

Description
Gets the output current crest factor

Query parameter
None

Response format

Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:CURR:CRES?

Response example
1.41

Remarks
The query can be made only when the AGC and extended measurement options are enabled.
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.

4.2.2.54 Get Output Measured Value (for Specific Phase): Get Apparent Power
:MEASure[:SCALar]:POWer[:AC]:APParent?

Description
Gets the apparent power [VA]

Query parameter
None

Response format

Query response range
For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:POW:APP?

Response example
367.0

Remarks
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.
4.2.2.55 Get Output Measured Value (for Specific Phase): Get Power Factor
:MEASure[:SCALar]:POWer[:AC]:PFACtor?

Description
Gets the power factor

Query parameter
None

Response format

<NR2> Query response range
0.00 to 1.00, Resolution 0.01

Query example
MEAS:POW:PFAC?

Response example
0.68

Remarks
The query can be made only when the AGC and extended measurement options are enabled.
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.

4.2.2.56 Get Output Measured Value (for Specific Phase): Get Reactive Power
:MEASure[:SCALar]:POWer[:AC]:REACtive?

Description
Gets the reactive power [var]

Query parameter
None

Response format

<INT> (1000 [var] or more)
<NR2> (Less than 1000 [var])

For the query response range and resolution, see the instruction manual of the main unit.

Query example
MEAS:POW:REAC?

Response example
269.0

Remarks
The query can be made only when the AGC and extended measurement options are enabled.
The response message to the query is not returned during the System Lock.
The query can be made only when the measurement query phase is L1, L2, or L3.
4.2.2.57 Get Output Measured Value (for Specific Phase): Get Active Power

:MEASure[:SCALar]:POWer[:AC][:REAL]?

Description

Gets the active power [W]

Query parameter

None

Response format

\(<\text{INT}>\rightarrow (1000 \text{ [W]} \text{ or more})
\)<NR2>\rightarrow (Less than 1000 \text{ [W]})

For the query response range and resolution, see the instruction manual of the main unit.

Query example

MEAS:POW?

Response example

249.0

Remarks

The response message to the query is not returned during the System Lock.

The query can be made only when the measurement query phase is L1, L2, or L3.

4.2.2.58 CO₂ Calculation Function: Clear Emission CO₂ Integration Value

:MEASure: CO2:TOTal:CLEar

Description

Clears the emission CO₂ integration value

Setting parameter

None

Setting example

MEAS: CO2:TOT:CLE

Remarks

The command is ignored during the System Lock/warning.
4.2.2.59 CO₂ Calculation Function: Set/Get Emission CO₂ Coefficient

:MEASure: CO2:COEFFicient

Description
Sets/gets the emission CO₂ coefficient [tCO₂/kWh]

Setting parameter

\(<\text{coef}>\) | MINimum | MAXimum

\(<\text{coef}>\) ::= <\text{REAL}>

\(<\text{REAL}>\) → Emission CO₂ coefficient value [tCO₂/kWh]: 0.000001 to 0.010000
Resolution 0.000001

MINimum → 0.000001
MAXimum → 0.010000

Query parameter

[MINimum | MAXimum]

MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

\(<\text{NR2}>\)

Setting example

MEAS: CO2:COEF 0.0001

Query example

MEAS: CO2:COEF?

Response example

0.000100

Remarks

The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.60 CO₂ Calculation Function: Get Emission CO₂ Internal Loss Instantaneous Value
:MEASure: CO2:RATE:LOSS?

Description
Gets the emission CO₂ internal loss instantaneous value [kgCO₂/h]

Query parameter
None

Response format
<NR2>

Query example
MEAS: CO2:RATE:LOSS?

Response example
0.7221

Remarks
The response message to the query is not returned during the System Lock.

4.2.2.61 CO₂ Calculation Function: Get Emission CO₂ Output Power Instantaneous Value
:MEASure: CO2:RATE:OUTPut?

Description
Gets the emission CO₂ output power instantaneous value [kgCO₂/h]

Query parameter
None

Response format
<NR2>

Query example
MEAS: CO2:RATE:OUTP?

Response example
32.9112

Remarks
The response message to the query is not returned during the System Lock.
4.2.2.62 CO₂ Calculation Function: Get Emission CO₂ Internal Loss Integration Value
:MEASure: CO2:TOTal:LOSS?

Description
Gets the emission CO₂ internal loss integration value [tCO₂]

Query parameter
None

Response format
<NR2>

Query example
MEAS: CO2:TOT:LOSS?

Response example
0.068136

Remarks
The response message to the query is not returned during the System Lock.

4.2.2.63 CO₂ Calculation Function: Get Emission CO₂ Output Power Integration Value
:MEASure: CO2:TOT:OUTPut?

Description
Gets the emission CO₂ output power integration value [tCO₂]

Query parameter
None

Response format
<NR2>

Query example
MEAS: CO2:TOT:OUTP?

Response example
1.163182

Remarks
The response message to the query is not returned during the System Lock.
4.2.2.64 Set Output Correction Function: Enable/Disable AGC Function

:OUTPut:AGC

Description
Sets/gets the AGC

Setting parameter

<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
OUTP:AGC ON

Query example
OUTP:AGC?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The AGC function can be used only when the output function is the Continuous function and the output mode is AC-INT/AC-VCA/AC-SYNC/DC-INT/DC-VCA.
When an AC voltage waveform other than SIN is selected, the AGC function cannot be enabled.
When the AGC function is enabled, and the output function is set to the Sequence or Simulation, the AGC function is forcibly disabled.
When the output function is set to the Sequence or Simulation, the AGC function cannot be enabled.
4.2.2.65 Set Output Correction Function: Enable/Disable Autocal Function

:OUTPut:ACALibration

Description
Sets/gets the Autocal

Setting parameter

\[\langle \text{state} \rangle ::= \langle \text{BOL} \rangle \]

\[\langle \text{BOL} \rangle \rightarrow 0/\text{OFF}: \text{Disable}, 1/\text{ON}: \text{Enable} \]

Query parameter
None

Response format

\[\langle \text{NBOL} \rangle \]

Setting example

OUTP:ACAL ON

Query example

OUTP:ACAL?

Response example

1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The Autocal function can be used only when the output function is the Continuous function and the output mode is AC-INT/AC-VCA/AC-SYNC/DC-INT/DC-VCA.
When an AC voltage waveform other than SIN is selected, the Autocal function cannot be enabled.
When the Autocal function is enabled, and the output function is set to the Sequence or Simulation, the Autocal function is forcibly disabled.
When the output function is set to the Sequence or Simulation, the Autocal function cannot be enabled.
4.2.2.66 Set External Input Signal: External Input Gain

:INPut:GAIN

Description
Sets/queries the external input gain
The setting can be made in the following modes:
AC-EXT, AC+DC-EXT, AC-VCA, DC-VCA, AC-ADD, AC+DC-ADD
(* EXT and ADD are optional)

Setting parameter
<inp gain> | MINimum | MAXimum
<inp gain> ::= <REAL>
REAL → External input gain: 0.0 to 220.0 (100V range), Resolution 0.1
0.0 to 440.0 (200V range), Resolution 0.1
MINimum → 0.0
MAXimum → 220.0 (100V range) | 440.0 (200V range)

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
INP:GAIN 10

Query example
INP:GAIN?

Response example
10.0

Remarks
For the polyphase model and polyphase system, the setting can be made only when the signal source is VCA.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
4.2.2.67 Set External Input Signal: External Synchronization Signal Source
:INPut:SYNC:SOURce

Description
Sets/gets the external synchronization signal source
The setting can be made in the AC-SYNC and AC+DC-SYNC modes

Setting parameter
<disc> ::= <disc>
 <disc> ::= LINE | EXT
 LINE → Line synchronization
 EXT → External synchronization

Query parameter
None

Response format
<disc>

Setting example
INP:SYNC:SOUR EXT

Query example
INP:SYNC:SOUR?

Response example
EXT

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence and Simulation.
The setting cannot be done during the output on.
4.2.2.68 Set/Get Output Waveform: Set/Get Clipped Sine Wave Type Specification

[:SOURce]:FUNCtion:CSINe:TYPE

Description
Sets/gets the clipped sine wave setting type

Setting parameter
<func shap>,<type>

<func shap> ::= <DISC>

<DISC> ::= CLP1 | CLP2 | CLP3
CLP1 → Clipped sine wave 1
CLP2 → Clipped sine wave 2
CLP3 → Clipped sine wave 3

Set parameter

<func shap> ::= <DISC>

<DISC> ::= CFACtor | CLIP
CFACtor → Crest factor
CLIP → Clip

Query parameter
<func shap>

<func shap> ::= <DISC>

<DISC> ::= CLP1 | CLP2 | CLP3

Response format
<DISC>

Setting example
FUNC:CSIN:TYPE CLP1, CFACCTOR

Query example
FUNC:CSIN:CFAC? CLP1

Response example
CFAC

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence control state or Simulation control state.
4.2.2.69 Set/Get Output Waveform: Set/Get Clipped Sine Wave Crest Factor

[:SOURce]:FUNCtion:CSINe:CFACtor

Description
Sets/gets the clipped sine wave crest factor

Setting parameter

<func shap>, <cf> | MINimum | MAXimum
<func shap> ::= <DISC>
<DISC> ::= CLP1 | CLP2 | CLP3
CLP1 → Clipped sine wave 1
CLP2 → Clipped sine wave 2
CLP3 → Clipped sine wave 3
<cf> ::= <REAL>
<REAL> → Crest factor: 1.10 to 1.41, Resolution 0.01
MINimum → 1.10
MAXimum → 1.41

Query parameter

<func shap>[, MINimum | MAXimum]
<func shap> ::= <DISC>
<DISC> ::= CLP1 | CLP2 | CLP3
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example
FUNC:CSIN:CFAC CLP1,1.2

Query example
FUNC:CSIN:CFAC? CLP1

Response example
1.20

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence control state or Simulation control state.
4.2.2.70 Set/Get Output Waveform: Set/Get Clipped Sine Wave Clip Ratio
[:SOURce]:FUNCtion:CSINe:CLIP

Description
Sets/gets the clipped sine wave clip ratio

Setting parameter
<func shap>,[<clip> | MINimum | MAXimum]
<func shap> ::= <DISC>
<DISC> ::= CLP1 | CLP2 | CLP3
CLP1 → Clipped sine wave 1
CLP2 → Clipped sine wave 2
CLP3 → Clipped sine wave 3
<clip> ::= <REAL>
<REAL> → Clip ratio: 40.0 to 100.0, Resolution 0.1
MINimum → 40.0
MAXimum → 100.0

Query parameter
<func shap>[, MINimum | MAXimum]
<func shap> ::= <DISC>
<DISC> ::= CLP1 | CLP2 | CLP3
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
FUNC:CSIN:CLIP CLP1, 80

Query example
FUNC:CSIN:CLIP? CLP1

Response example
80.0

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done in the Sequence control state or Simulation control state.
4.2.2.71 Set/Get Output Waveform: Save Clipped Sine Wave
:TRACe|DATA:CSINe:STORe

Description
Saves the clipped sine wave

Setting parameter
None

Setting example
TRAC:CSIN:STOR

Remarks
The setting is ignored during the System Lock/warning.

4.2.2.72 Set/Get Output Waveform: Initialize Arbitrary Wave Memory
:TRACe|DATA:WAVe:CLEar

Description
Initializes the arbitrary wave memory

Setting parameter
<memory> | MINimum | MAXimum
<memory> ::= <INT>

MINimum | MAXimum
1 | 16

Setting example
TRAC:WAV:CLE 1

Remarks
The setting is ignored during the System Lock/warning.
4.2.2.73 Set/Get Output Waveform: Transfer Arbitrary Wave Data

:TRACe|DATA:WAVe[:DATA]

Description
Sets the arbitrary wave

Setting parameter
<memory>,<data>

<memory> ::= <INT>

<INT> → Arbitrary wave memory number: 1 to 16

<data> ::= <BLK>

<BLK> → Arbitrary waveform data

#48192<DAB>...<DAB>

#: Represents that the block data is sent

4: Represents the number of the subsequent numbers

8192: Represents the number of the subsequent byte data

<DAB>...<DAB>: 16-bit, 4096 words waveform data

The waveform data format is the complement form of 2 in the big endian

Setting example

TRAC:WAV 1, #48192<DAB>...<DAB>

Remarks
Not available for GPIB and RS232.
The setting is ignored during the System Lock/warning.
4.2.2.74 Set/Get Output Waveform: Specify Arbitrary Wave Name

:TRACe|DATA:WAVe:NAME

Description
Sets/gets the arbitrary wave name

Setting parameter
<memory>,<name>
<memory> ::= <INT>
<INT> → Arbitrary wave memory number: 1 to 16

<name> ::= <STR>
<STR> → Arbitrary wave name (20 characters or less)
The arbitrary wave name should contain 20 one-byte characters
(alphanumeric characters) or less.
However, the following 9 characters cannot be used:
\ / : * ? " < > |

Query parameter
<memory> | MINimum | MAXimum
<memory> ::= <INT>

<INT> → Arbitrary wave memory number: 1 to 16

MINimum → Gets the arbitrary wave name for the arbitrary wave memory number 1
MAXimum → Gets the arbitrary wave name for the arbitrary wave memory number 16

Response format
<STR>

Setting example
TRAC:WAV:NAME 1,"ARB1"

Query example
TRAC:WAV:NAME? 1

Response example
"ARB1"

Remarks
The setting is ignored during the System Lock/warning.
4.2.2.75 Set External Control Signal: Permit/Inhibit External Control Input
:SYSTem:CONFigure:EXTio[:STATe]

Description
Sets/gets the external control input
Note that the external control input is ignored in the Remote state.

Setting parameter
<state> ::= <BOL>
<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SYST:CONF:EXT ON

Query example
SYST:CONF:EXT?

Response example
1

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.2.76 Set External Control Signal: Set/Get External Control Output Polarity
:SYSTem:CONFigure:EXTio:POLarity

Description
Sets/gets the external control output polarity

Setting parameter
<polarity> ::= <DISC>

<DISC> ::= POSitive | NEGative

POSitive → Positive logic
NEGative → Negative logic

Query parameter
None

Response format
<DISC>

Setting example
SYST:CONF:EXT:POL POSITIVE

Query example
SYST:CONF:EXT:POL?

Response example
POS

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.3 Sequence Function Commands (Option for Order)

4.2.3.1 Set Panel Display: Set Step Time Display Unit

:DISPlay[:WINDow]:TIME:UNIT

Description
Sets/gets the Sequence/Simulation Step Time unit
It is reflected to the display and setting on the panel
The setting/getting from the remote command is made in seconds regardless of the DISP:TIME:UNIT setting

Setting parameter

<unit> ::= <DISC>
<DISC> ::= MS | S
MS → millisecond
S → second

Query parameter
None

Response format
<DISC>

Setting example
DISP:TIME:UNIT MS

Query example
DISP:TIME:UNIT?

Response example
MS

Remarks
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.3.2 Sequence Function Control: Get State
[:SOURce]:SEQUence:CONTRol[:STATe]?

Description
Gets the sequence control state

Query parameter
None

Response format
<DISC>

Query example
SEQ:CONT?

Response example
EDIT Edit state
CONTROL Control state

Remarks
The query cannot be done unless the Sequence or Simulation function option is enabled.
The response message to the query is not returned during the System Lock.

4.2.3.3 Sequence Function Control: Execution Control
:TRIGger:SEQUence:SELECTed:EXECute

Description
Sets the sequence control

Setting parameter
<ctrl> ::= <DISC>

<DISC> ::= STOP | STARt | HOLD | BRAN1 | BRAN2
STOP → Stop running
STARt → Start/resume running
HOLD → Suspend
BRAN1 → Branch 1
BRAN2 → Branch 2

Setting example
TRIG:SEQ:SEL:EXEC HOLD

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The operation can be made only in the Sequence control state.
4.2.3.4 Sequence Function Control: Switch to Edit Mode
[:SOURce]:SEQuence:EDIT

Description
Sets the Sequence state to the Edit state
Switches it from the Control state to the Edit state

Setting parameter
None

Setting example
SEQ:EDIT

Remarks
The setting cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting can be made only in the Sequence control state.

4.2.3.5 Sequence Function Control: Compile Setting Parameter and Switch to Control Mode
:TRIGger:SEQuence:COMPile

Description
Compiles the sequence data

Setting parameter
None

Setting example
TRIG:SEQ:COMP

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled.
The command is ignored during the System Lock/warning.
The operation can be made only in the Sequence edit state.
4.2.3.6 Sequence Function Control: Get Running Step Number

[:SOURce]:SEQuence:CSTep?

Description

Gets the running step number

Query parameter

None

Response format

<Int>

Query example

SEQ:CST?

Response example

2

Remarks

The query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock.
The response message to the query is not returned during the System Lock.
4.2.3.7 Set Parameter Common to Steps (Enabled at Edit Mode): Set Parameter Common to Steps
[:SOURce]:SEQuence:CPARameter

Description
Sets/gets the sequence step-control parameter
Dummy data should be set for parameters excluded depending on the step.
Dummy data are not set.

Setting parameter
<time>,<start phs>,<start phs enable>,<stop phs>,<stop phs enable>,<step term>,
<jump to>,<jump enable>,<jump cnt>,<code>,
<branch1>,<branch1 enable>,<branch2>,<branch2 enable>,<trig out>

<time> ::= <REAL>
 <REAL> → Step Time: 0.0010 to 999.9999, Resolution 0.0001
<start phs> ::= <REAL>
 <REAL> → Start Phase: 0.0 to 359.9, Resolution 0.1
<start phs enable> ::= <BOL>
 <BOL> → 0/OFF: Disable, 1/ON: Enable
<stop phs> ::= <REAL>
 <REAL> → Stop Phase: 0.0 to 359.9, Resolution 0.1
<stop phs enable> ::= <BOL>
 <BOL> → 0/OFF: Disable, 1/ON: Enable
<step term> ::= <DISC>
 <DISC> ::= CONTinue | END | HOLD
 CONTinue → Continue
 END → Exit
 HOLD → Hold

<jump to> ::= <INT>
 <INT> → Jump-to step number: 0 to 255
<jump enable> ::= <BOL>
 <BOL> → 0/OFF: Disable, 1/ON: Enable
<jump cnt> ::= <INT>
 <INT> → Jump count: 0 to 9999
 Jump count 0 means infinite
<code> ::= <INT>
 <INT> → Step sync output: 0 to 3
<branch1> ::= <INT>
 <INT> → Branch 1 destination: 0 to 255
<branch1 enable> ::= <BOL>
 <BOL> → 0/OFF: Disable, 1/ON: Enable
<branch2> ::= <INT>
 <INT> → Branch 2 destination: 0 to 255
<branch2 enable> ::= <BOL>
 <BOL> → 0/OFF: Disable, 1/ON: Enable
<trig out> ::= <BOL>
 <BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
 None

Response format
 <NR2>,<NR2>,<NBOL>,<NR2>,<NBOL>,<DISC>,<INT>,<NBOL>,<INT>,<INT>,
 <INT>,<NBOL>,<INT>,<NBOL>,<NBOL>

Setting example
 SEQ:CPAR 10,90,ON,270,ON,CONT,3,ON,5,2,5,ON,6,ON,ON

Query example
 SEQ:CPAR?

Response example
 10.0000,90.0,1,270.0,1,CONT,3,1,5, 2,5,1,6,1,1

Remarks
 The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
 The setting is ignored during the System Lock/warning.
 The response message to the query is not returned during the System Lock.
 The setting can be made only in the Sequence edit state.
4.2.3.8 Set Parameter for Specified Step (Enabled at Edit Mode): Specify Step Number to Set
[:SOURce]:SEQuence:STEP

Description
Sets/gets the Sequence edit target step number

Setting parameter
<seq step> | MINimum | MAXimum
<seq step> ::= <INT>
<INT> → Sequence edit target step number: 0 to 255
MINimum → 0
MAXimum → 255

Query parameter
[MAXimum | MINimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
SEQ:STEP 1

Query example
SEQ:STEP?

Response example
1

Remarks
The setting cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting can be made only in the Sequence edit state.
Set Specified Step Parameter (Enabled at Edit Mode): Specify Phase To Set (Phase Number)

[:SOURce]:SEQUence:INStrument:NSELect

Description

Sets/gets the phase to set sequence (phase number)

Setting parameter

\(<\text{phase number}> | \text{MIN} \text{imum} | \text{MAX} \text{imum}\)

\(<\text{phase number}> ::= <\text{INT}>\)

\(<\text{INT}> \rightarrow \text{Phase number: 0 to 2}\)

0: L1 phase | 1: L2 phase | 2: L3 phase

\(\text{MIN} \text{imum} \rightarrow 0\)

\(\text{MAX} \text{imum} \rightarrow 2\)

Query parameter

\([\text{MIN} \text{imum} | \text{MAX} \text{imum}]\)

\(\text{MIN} \text{imum} \rightarrow \text{Gets the minimum value}\)

\(\text{MAX} \text{imum} \rightarrow \text{Gets the maximum value}\)

Response format

\(<\text{INT}>\)

Setting example

SEQ:INST:NSEL 1

Query example

SEQ:INST:NSEL?

Response example

1

Remarks

The setting cannot be done unless the Sequence or Simulation function option is enabled.

The setting is ignored during the System Lock/warning.

The response message to the query is not returned during the System Lock.
4.2.3.10 Set Specified Step Parameter (Enabled at Edit Mode): Specify Phase To Set (Phase)

[:SOURce]:SEQUence:INSTrument:SELect

Description
Sets/gets the phase to set sequence (phase)

Setting parameter
<phase name> ::= <DISC>
<DISC> ::= L1 | L2 | L3

L1 → L1 phase, L2 → L2 phase, L3 → L3 phase

Query parameter
None

Response format
<DISC>

Setting example
SEQ:INST:SEL L1

Query example
SEQ:INST:SEL?

Response example
L1

Remarks
The setting cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
4.2.3.11 Set Parameter for Specified Step (Enabled at Edit Mode): Set Step Parameter
[:SOURce]:SEQuence:SPARameter

Description
Sets/gets the sequence intra-Step parameter
Note that the setting range shown is for the 1.5kVA 100V range.
Dummy data should be set for parameters excluded depending on the mode, step, and phase.
Dummy data are not set.

Setting parameter
<acv>,<acv mode>,<dcv>,<dcv mode>,<freq>,<freq mode>,<wave>,<phase>

<acv> ::= <REAL>
REAL → AC voltage: 0.0 to 155.0 [Vrms], Resolution 0.1
The maximum voltage and the unit are different depending on the range and waveform

<acv mode> ::= <DISC>
DISC ::= CONST | KEEP | SWEEP
CONST → Constant
SWEEP → Sweep
KEEP → Keep

<dcv> ::= <REAL>
REAL → AC voltage:-220.0 to 220.0 [V], Resolution 0.1
The maximum voltage is different depending on the range

<dcv mode> ::= <DISC>
DISC ::= CONST | KEEP | SWEEP
CONST → Constant
SWEEP → Sweep
KEEP → Keep

<freq> ::= <REAL>
REAL → Frequency: 1.0 to 550.0, Resolution 0.1
The lower limit value is different depending on the AC/DC mode

<freq mode> ::= <DISC>
DISC ::= CONST | KEEP | SWEEP
CONST → Constant
SWEEP → Sweep
KEEP → Keep

<wave> ::= <DISC>
DISC ::= SIN | ARB1 | ARB2 | ARB3 | ARB4 | ARB5 | ARB6 | ARB7 | ARB8 | ARB9 | ARB10 | ARB11 | ARB12 | ARB13 | ARB14 | ARB15 | ARB16 | CLP1 | CLP2 | CLP3
SIN → Sine wave
ARB1 → Arbitrary wave 1
ARB16 → Arbitrary wave 16
CLP1 → Clipped sine wave 1
CLP2 → Clipped sine wave 2
CLP3 → Clipped sine wave 3

<phase> ::= <REAL>

<REAL> → Phase angle: Default value ± 35.0, Resolution 0.1
 For the single-phase three-wire
 L12 default value: 180.0deg
 For the three-phase
 L12 default value: 120.0 deg, L13 default value: 240.0deg

Query parameter
None

Response format
<NR2>,<DISC>,<NR2>,<DISC>,<NR2>,<DISC>,<NR2>,<DISC>,<NR2>

Setting example
SEQ:SPAR 10,Sweep,20,Sweep,50,Sweep,Sin,120

Query example
SEQ:SPAR?

Response example
10.0,Sweep,20.0,Sweep,50.0,Sweep,Sin,120.0

Remarks
The setting cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting can be made only in the Sequence edit state.
4.2.3.12 Initialize/Read/Save Sequence Data (Enabled at Edit Mode): Initialize Sequence Data

:TRACe|DATA:SEQUence:CLEar

Description
Initializes the sequence data

Setting parameter

- `<seq memory> | MINimum | MAXimum`
- `<seq memory> ::= <INT>`
- `<INT> → 0 to 5`

<table>
<thead>
<tr>
<th>MINimum</th>
<th>MAXimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 to 5</td>
</tr>
<tr>
<td>1 to 5</td>
<td>5</td>
</tr>
</tbody>
</table>

- MINimum → 0
- MAXimum → 5

Setting example

TRAC:SEQ:CLE 1

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled. The command is ignored during the System Lock/warning. The operation cannot be done unless the output function is the Sequence.
4.2.3.13 Initialize/Read/Save Sequence Data (Enabled at Edit Mode): Sequence Data Name
:TRACe|DATA:SEQUence:NAME

Description
Sets/gets the sequence data name

Setting parameter
{<seq memory> | MINimum | MAXimum},<name>
 <seq memory> ::= <INT>
 <INT> → 1 to 5: Sequence Memory numbers 1-5
 MINimum → 1
 MAXimum → 5
 <name> ::= <STR>
 <STR> → Sequence data name
 The sequence data name should contain 20 one-byte characters
 (alphanumeric characters) or less.
 However, the following 9 characters cannot be used:
 \ / : * ? " < > |

Query parameter
<seq memory> | MINimum | MAXimum
<seq memory> ::= <INT>
 <INT> → 1 to 5: Sequence Memory numbers 1-5
 MINimum → 1
 MAXimum → 5

Setting example
 TRAC:SEQ:NAME 1,"SEQ1"

Query example
 TRAC:SEQ:NAME? 1

Response example
 "SEQ1"

Remarks
 The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
 The setting is ignored during the System Lock/warning.
 The response message to the query is not returned during the System Lock.
 The setting/query cannot be done unless the output function is the Sequence.
4.2.3.14 Initialize/Read/Save Sequence Data (Enabled at Edit Mode): Read Sequence Data
:TRACe|DATA:SEQuence:RECall

Description
Reads the sequence data

Setting parameter
<seq memory> | MINimum | MAXimum
<seq memory> ::= <INT>
<INT> → Sequence Memory number: 1 to 5
MINimum → 1
MAXimum → 5

Setting example
TRAC:SEQ:REC 1

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled.
The command is ignored during the System Lock/warning.
The operation cannot be done unless the output function is the Sequence.

4.2.3.15 Initialize/Read/Save Sequence Data (Enabled at Edit Mode): Save Sequence Data
:TRACe|DATA:SEQuence:STORe

Description
Saves the sequence data

Setting parameter
<seq memory> | MINimum | MAXimum
<seq memory> ::= <INT>
<INT> → Sequence Memory number: 1 to 5
MINimum → 1
MAXimum → 5

Setting example
TRAC:SEQ:STOR 1

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled.
The command is ignored during the System Lock/warning.
The operation cannot be done unless the output function is the Sequence.
4.2.4 Simulation Function Commands (Option for Order)

4.2.4.1 Set Panel Display: Set Step Time Display Unit

:DISPlay[:WINDow]:TIME:UNIT

Description
Sets/gets the Sequence/Simulation Step Time unit
It is reflected to the display and setting on the panel
The setting/getting from the remote command is made in seconds regardless of the
DISP:TIME:UNIT setting

Setting parameter

<unit> ::= <DISC>

<DISC> ::= MS | S

MS → millisecond
S → second

Query parameter

None

Response format

<DISC>

Setting example

DISP:TIME:UNIT MS

Query example

DISP:TIME:UNIT?

Response example

MS

* Same as the Sequence function command.
4.2.4.2 Simulation Function Control: Get State
[:SOURce]:SIMulation:CONTrol[:STATe]?

Description
Gets the simulation control state

Query parameter
None

Response format
<DISC>

Query example
SIM:CONT?

Response example
EDIT Edit state
CONTROL Control state

Remarks
The query cannot be done unless the Sequence or Simulation function option is enabled.
The response message to the query is not returned during the System Lock.

4.2.4.3 Simulation Function Control: Execution Control
:TRIGger:SIMulation:SELected:EXECute

Description
Sets the simulation control

Setting parameter
<ctrl> ::= <DISC>

<DISC> ::= STOP | STARt
STOP → Stop running
STARt → Start running

Setting example
TRIG:SIM:SEL:EXEC STAR

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled.
The command is ignored during the System Lock/warning.
The operation can be made only in the Simulation control state.
4.2.4.4 Simulation Function Control: Switch to Edit Mode
[:SOURce]:SIMulation:EDIT

Description
Sets the Simulation state to the Edit state
Switches it from the Control state to the Edit state

Setting parameter
None

Setting example
SIM:EDIT

Remarks
The query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The setting can be made only in the Simulation control state.

4.2.4.5 Simulation Function Control: Compile Setting Parameter and Switch to Control Mode
:TRIGger:SIMulation:COMPile

Description
Compiles the simulation data

Setting parameter
None

Setting example
TRIG:SIM:COMP

Remarks
The operation cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The operation can be made only in the simulation edit state.
4.2.4.6 Simulation Function Control: Get Running Step Number

[:SOURce]:SIMulation:CSTep?

Description

Gets the running step number

Query parameter

None

Response format

<INT>

Query example

SIM:CST?

Response example

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initial Step</td>
</tr>
<tr>
<td>1</td>
<td>Normal 1 step</td>
</tr>
<tr>
<td>2</td>
<td>Transition 1 step</td>
</tr>
<tr>
<td>3</td>
<td>Abnormal step</td>
</tr>
<tr>
<td>4</td>
<td>Transition 2 step</td>
</tr>
<tr>
<td>5</td>
<td>Normal 2 step</td>
</tr>
</tbody>
</table>

Remarks

The query cannot be done unless the Sequence or Simulation function option is enabled. The response message to the query is not returned during the System Lock.
4.2.4.7 Set Repeat Execution (Enabled at Edit Mode): Enable/Disable Repeat Execution

[:SOURce]:SIMulation:REPeat:ENABle

Description
Sets/gets whether to enable/disable the Simulation repeat count

Setting parameter

\[<\text{state}> ::= <\text{BOL}>\]
\[<\text{BOL}> \rightarrow 0/\text{OFF}: \text{Disable}, 1/\text{ON}: \text{Enable}\]

Query parameter
None

Response format

\[<\text{BOL}>\]

Setting example

SIM:REP:ENAB ON

Query example

SIM:REP:ENAB?

Response example

1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.8 Set Repeat Execution (Enabled at Edit Mode): Set Repeat Execution Count
[:SOURce]:SIMulation:REPeat:COUNt

Description
Sets/gets the Simulation repeat count

Setting parameter

<sim count> | MINimum | MAXimum
<sim count> ::= <INT>

<INT> → Repeat count: 0 to 9999 (0 means the infinite repeat)

MINimum → 0
MAXimum → 9999

Query parameter

[MINimum | MAXimum]

MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<INT>

Setting example
SIM:REP:COUN 10

Query example
SIM:REP:COUN?

Response example
10

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.9 Set Parameter for Initial Step (Enabled at Edit Mode): Set Output Voltage

[:SOURce]:SIMulation:INITial:VOLTage

Description
Sets/gets the Initial Step amplitude

Setting parameter
<volt> | MINimum | MAXimum
<volt> ::= <REAL>
REAL → AC output voltage: 0.0 to 155.0 (100V range), Resolution 0.1
0.0 to 310.0 (200V range), Resolution 0.1
MINimum → 0.0
MAXimum → 155.0 (100V range) | 310.0 (200V range)

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:INIT:VOLT 100

Query example
SIM:INIT:VOLT?

Response example
100.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.10 Set Parameter for Initial Step (Enabled at Edit Mode): Set Frequency

[:SOURce]:SIMulation:INITial:FREQuency

Description
Sets/gets the Initial Step frequency

Setting parameter

\(<\text{frequency}> | \text{MINimum} | \text{MAXimum}\\
\langle\text{frequency}\rangle \ ::= \langle\text{REAL}\rangle\\n\langle\text{REAL}\rangle \rightarrow \text{Frequency: 1.0 to 550.0, Resolution 0.1}\\n\text{MINimum} \rightarrow 1.0\\n\text{MAXimum} \rightarrow 550.0\\n\)

Query parameter

\[\text{MINimum} | \text{MAXimum}\]

\text{MINimum} \rightarrow \text{Gets the minimum value}\\n\text{MAXimum} \rightarrow \text{Gets the maximum value}

Response format

\(<\text{NR2}>\)

Setting example

\text{SIM:INIT:FREQ 50}

Query example

\text{SIM:INIT:FREQ?}

Response example

50.0

Remarks

The setting/query cannot be done unless the Sequence or Simulation function option is enabled. The setting is ignored during the System Lock/warning. The response message to the query is not returned during the System Lock. The setting/query can be made only in the simulation edit state.
4.2.4.11 Set Parameter for Initial Step (Enabled at Edit Mode): Set Whether to Enable/Disable Start Phase Specification
[:SOURce]:SIMulation:INITial:PHASe:STARt:ENABle

Description
Sets/gets whether to enable/disable the Initial Step start phase

Setting parameter

<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:INIT:PHAS:STAR:ENAB ON

Query example
SIM:INIT:PHAS:STAR:ENAB?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
Set Parameter for Initial Step (Enabled at Edit Mode): Set Start Phase

[:SOURce]:SIMulation:INITial:PHASE:STARt[:IMMediate]

Description
Sets/gets the Initial Step start phase

Setting parameter

<phase> | MINimum | MAXimum

<phase> ::= <REAL>

<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

SIM:INIT:PHAS:STAR 0

Query example

SIM:INIT:PHAS:STAR?

Response example

0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.13 Set Parameter for Initial Step (Enabled at Edit Mode): Set Whether to Enable/Disable Stop Phase Specification

[:SOURce]:SIMulation:INITial:PHAs:STOP:ENABle

Description
Sets/gets whether to enable/disable the Initial Step stop phase

Setting parameter

\[<\text{state}> ::= <\text{BOL}>\]

\[<\text{BOL}> \rightarrow 0/\text{OFF}: \text{Disable}, 1/\text{ON}: \text{Enable}\]

Query parameter
None

Response format
<NBOL>

Setting example
SIM:INIT:PHAS:STOP:ENAB ON

Query example
SIM:INIT:PHAS:STOP:ENAB?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.14 Set Parameter for Initial Step (Enabled at Edit Mode): Set Stop Phase
[:SOURce]:SIMulation:INITial:PHAse:STOP[:IMMediate]

Description
Sets/gets the Initial Step stop phase

Setting parameter
<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:INIT:PHAS:STOP 0

Query example
SIM:INIT:PHAS:STOP?

Response example
0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.15 Set Parameter for Initial Step (Enabled at Edit Mode): Set Synchronization Output
[:SOURce]:SIMulation:INITial:CODE

Description
Sets/gets the Initial Step - step sync output

Setting parameter
<code> | MINimum | MAXimum
<code> ::= <INT>
<INT> → Step sync output: 0 to 3, Resolution 1
MINimum → 0
MAXimum → 3

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
SIM:INIT:CODE 1
Query example
SIM:INIT:CODE?
Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.16 Set Parameter for Normal 1 Step Parameter (Enabled at Edit Mode): Set Execution Time
[:SOURce]:SIMulation:NORMal1:TIME

Description
Sets/gets the Normal 1 Step Step Time
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter
<sim step time> | MINimum | MAXimum
<sim step time> ::= <REAL>
<REAL> → Step Time: 0.0010 to 999.9999, Resolution 0.0001
MINimum → 0.0010
MAXimum → 999.9999

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:NORM1:TIME 10

Query example
SIM:NORM1:TIME?

Response example
10.0000

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.17 Set Parameter for Normal 1 Step Parameter (Enabled at Edit Mode): Set Output Voltage

[:SOURce]:SIMulation:NORMal1:VOLTage

Description
Sets/gets the Normal 1 Step amplitude
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter

volt | MINimum | MAXimum
<volt> ::= <REAL>
<REAL> → AC output voltage: 0.0 to 155.0 (100V range), Resolution 0.1
0.0 to 310.0 (200V range), Resolution 0.1
MINimum → 0.0
MAXimum → 155.0 (100V range) | 310.0 (200V range)

Query parameter

[M]INimum | [MAX]imum
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example

SIM:NORM1:VOLT 100

Query example

SIM:NORM1:VOLT?

Response example

100.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.18 Set Parameter for Normal 1 Step Parameter (Enabled at Edit Mode): Set Frequency
[:SOURce]:SIMulation:NORMal1:FREQuency

Description
Sets/gets the Normal 1 Step frequency
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter

<frequency> | MINimum | MAXimum
<frequency> ::= <REAL>
<REAL> → Frequency: 1.0 to 550.0, Resolution 0.1
MINimum → 1.0
MAXimum → 550.0

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example
SIM:NORM1:FREQ 50

Query example
SIM:NORM1:FREQ?

Response example
50.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.19 Set Parameter for Normal 1 Step (Enabled at Edit Mode): Set Whether to Enable/Disable Start Phase Specification

[:SOURce]:SIMulation:NORMal1:PHASe:STARt:ENABle

Description
Sets/gets whether to enable/disable the Normal 1 Step start phase
The short form of NORMal1 is NORM1. ”1” cannot be omitted.

Setting parameter

\[
\text{<state>} := \text{<BOL>}
\]

\[
\text{<BOL>} \rightarrow \text{0/OFF: Disable, 1/ON: Enable}
\]

Query parameter
None

Response format

\[
\text{<NBOL>}
\]

Setting example

SIM:NORM1:PHAS:STAR:ENAB ON

Query example

SIM:NORM1:PHAS:STAR:ENAB?

Response example

1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.20 Set Parameter for Normal 1 Step (Enabled at Edit Mode): Set Start Phase
[:SOURce]:SIMulation:NORMal1:PHASE:STARt[:IMMediate]

Description
Sets/gets the Normal 1 Step start phase
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter
<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM: NORM1: PHAS: START 0

Query example
SIM: NORM1: PHAS: START?

Response example
0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
Set Parameter for Normal 1 Step (Enabled at Edit Mode): Set Whether to Enable/Disable Stop Phase Specification
[:SOURce]:SIMulation:NORMal1:PHASe:STOP:ENABle

Description
Sets/gets whether to enable/disable the Normal 1 Step stop phase
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter
<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:NORM1:PHAS:STOP:ENAB ON

Query example
SIM:NORM1:PHAS:STOP:ENAB?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.22 Set Parameter for Normal 1 Step Parameter (Enabled at Edit Mode): Set Stop Phase
[:SOURce]:SIMulation:NORMal1:PHASe:STOP[:IMMediate]

Description
Sets/gets the Normal 1 Step stop phase
The short form of NORMal1 is NORM1. ”1” cannot be omitted.

Setting parameter
<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:NORM1:PHAS:STOP 0

Query example
SIM:NORM1:PHAS:STOP?

Response example
0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.23 Set Parameter for Normal 1 Step Parameter (Enabled at Edit Mode): Set Synchronization Output

\[[:\text{SOURce}]:\text{SIMulation}:\text{NORMal1}:\text{CODE}\]

Description
Sets/gets the Normal 1 Step step sync output
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter

\(<\text{code}> | \text{MINimum} | \text{MAXimum}\)

\(<\text{code}> ::= <\text{INT}>\)

\(<\text{INT}> \rightarrow \text{Step sync output: 0 to 3, Resolution 1}\)

MINimum \rightarrow 0

MAXimum \rightarrow 3

Query parameter

\([\text{MINimum} | \text{MAXimum}]\)

MINimum \rightarrow \text{Gets the minimum value}

MAXimum \rightarrow \text{Gets the maximum value}

Response format

\(<\text{INT}>\)

Setting example

SIM:NORM1:CODE 1

Query example

SIM:NORM1:CODE?

Response example

1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.24 Set Parameter for Normal 1 Step (Enabled at Edit Mode): Set Trigger Output (G1)
[:SOURce]:SIMulation:NORMal1:TRIGger[:STATe]

Description

Sets/gets the Normal 1 Step trigger (G1)
The short form of NORMal1 is NORM1. "1" cannot be omitted.

Setting parameter

<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter

None

Response format

<NBOL>

Setting example

SIM:NORM1:TRIG ON

Query example

SIM:NORM1:TRIG?

Response example

1

Remarks

The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.25 Set Parameter for Trans 1 Step Parameter (Enabled at Edit Mode): Set Execution Time
[:SOURce]:SIMulation:TRANsition1:TIME

Description
Sets/gets the Trans 1 Step - Step Time

Setting parameter

<sim step time> | MINimum | MAXimum
<sim step time> ::= <REAL>
<REAL> → Step Time: 0.0000, 0.0010 to 999.9999, Resolution 0.0001
MINimum → 0.0000
MAXimum → 999.9999

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:TRAN1:TIME 10

Query example
SIM:TRAN1:TIME?

Response example
10.0000

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.26 Set Parameter for Trans 1 Step Parameter (Enabled at Edit Mode): Set Synchronization Output

[:SOURce]:SIMulation:TRANSition1:CODE

Description
Sets/gets the Trans 1 Step step sync output

Setting parameter
<code> | MINimum | MAXimum
<code> ::= <INT>

<INT> → Step sync output: 0 to 3, Resolution 1
MINimum → 0
MAXimum → 3

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
SIM:TRAN1:CODE 1

Query example
SIM:TRAN:CODE?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.27 Set Parameter for Trans 1 Step (Enabled at Edit Mode): Set Trigger Output (G2)
[:SOURce]:SIMulation:TRANsition1:TRIGger[:STATe]

Description
Sets/gets the Trans 1 Step trigger (G2)

Setting parameter

<state> ::= <BOL>

<BOL> \rightarrow 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:TRAN1:TRIG ON

Query example
SIM:TRAN1:TRIG?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.28 Set Parameter for Abnormal Step Parameter (Enabled at Edit Mode): Set Execution Time
[:SOURce]:SImulation:ABNormal:TIME

Description
Sets/gets the Abnormal Step - Step Time

Setting parameter
<sim step time> | MINimum | MAXimum
<sim step time> ::= <REAL>
<REAL> → Step Time: 0.0010 to 999.9999, Resolution 0.0001
MINimum → 0.0010
MAXimum → 999.9999

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:ABN:TIME 10

Query example
SIM:ABN:TIME?

Response example
10.0000

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.29 Set Parameter for Abnormal Step Parameter (Enabled at Edit Mode): Set Output Voltage
[:SOURce]:SIMulation:ABNormal:VOLTage

Description
Sets/gets the Abnormal Step abnormal amplitude

Setting parameter
<volt> | MINimum | MAXimum
<volt> ::= <REAL>
REAL → AC output voltage: 0.0 to 155.0 (100V range), Resolution 0.1
0.0 to 310.0 (200V range), Resolution 0.1
MINimum → 0.0
MAXimum → 155.0 (100V range) | 310.0 (200V range)

Query parameter
[MAXimum | MINimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:ABN:VOLT 100

Query example
SIM:ABN:VOLT?

Response example
100.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
Set Parameter for Abnormal Step Parameter (Enabled at Edit Mode): Set Frequency
[:SOURce]:SIMulation:ABNormal:FREQuency

Description
Sets/gets the Abnormal Step abnormal frequency

Setting parameter

```
<T> MINimum | MAXimum
<T> ::= <REAL>
<REAL> → Frequency: 1.0 to 550.0, Resolution 0.1
MINimum → 1.0
MAXimum → 550.0
```

Query parameter

```
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value
```

Response format

```
<NR2>
```

Setting example

```
SIM:ABN:FREQ 50
```

Query example

```
SIM:ABN:FREQ?
```

Response example

```
50.0
```

Remarks

The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
Set Parameter for Abnormal Step (Enabled at Edit Mode): Set Whether to Enable/Disable Start Phase Specification

[:SOURce]:SIMulation:ABNormal:PHASe:STARt:ENABle

Description
Sets/gets whether to enable/disable the Abnormal Step start phase

Setting parameter

<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:ABN:PHAS:STAR:ENAB ON

Query example
SIM:ABN:PHAS:STAR:ENAB?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.32 Set Parameter for Abnormal Step (Enabled at Edit Mode): Set Start Phase
[:SOURce]:SIMulation:ABNormal:PHASe:STARt[:IMMediate]

Description
Sets/gets the Abnormal Step start phase

Setting parameter

<table>
<thead>
<tr>
<th><phase></th>
<th>MINimum</th>
<th>MAXimum</th>
</tr>
</thead>
<tbody>
<tr>
<td><phase> ::= <REAL></td>
<td></td>
<td></td>
</tr>
<tr>
<td><REAL> → Phase: 0.0 to 359.9, Resolution 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINimum → 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXimum → 359.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Query parameter

<table>
<thead>
<tr>
<th>[MINimum</th>
<th>MAXimum]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINimum → Gets the minimum value</td>
<td></td>
</tr>
<tr>
<td>MAXimum → Gets the maximum value</td>
<td></td>
</tr>
</tbody>
</table>

Response format

<NR2>

Setting example

SIM:ABN:PHAS:STAR 0

Query example

SIM:ABN:PHAS:STAR?

Response example

0.0

Remarks

The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
Set Parameter for Abnormal Step (Enabled at Edit Mode): Set Whether to Enable/Disable Stop Phase Specification

[:SOURce]:SIMulation:ABNormal:PHAse:STOP:ENABle

Description
Sets/gets whether to enable/disable the Abnormal Step stop phase

Setting parameter

\[
\text{<state> ::= <BOL>}
\]

\[
\text{<BOL> \rightarrow 0/OFF: Disable, 1/ON: Enable}
\]

Query parameter

None

Response format

<NBOL>

Setting example

SIM:ABN:PHAS:STOP:ENAB ON

Query example

SIM:ABN:PHAS:STOP:ENAB?

Response example

1

Remarks

The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.34 Set Parameter for Abnormal Step Parameter (Enabled at Edit Mode): Set Stop Phase
[:SOURce]:SIMulation:ABNormal:PHASE:STOP[:IMMediate]

Description
Sets/gets the Abnormal Step stop phase

Setting parameter

<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format

<NR2>

Setting example
SIM:ABN:PHAS:STOP 0

Query example
SIM:ABN:PHAS:STOP?

Response example
0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.35 Set Parameter for Abnormal Step Parameter (Enabled at Edit Mode): Set Synchronization Output

[:SOURce]:SIMulation:ABNormal:CODE

Description
Sets/gets the Abnormal Step - step sync output

Setting parameter
<code> | MINimum | MAXimum
<code> ::= <INT>

<INT> → Step sync output: 0 to 3, Resolution 1
MINimum → 0
MAXimum → 3

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
SIM:ABN:CODE 1

Query example
SIM:ABN:CODE?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.36 Set Parameter for Abnormal Step (Enabled at Edit Mode): Set Trigger Output (G3)
[:SOURce]:SIMulation:ABNormal:TRIGger[:STATe]

Description
Sets/gets the Abnormal Step trigger (G3)

Setting parameter
<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:ABN:TRIG ON

Query example
SIM:ABN:TRIG?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.37 Set Parameter for Trans 2 Step Parameter (Enabled at Edit Mode): Set Execution Time
[:SOURce]:SIMulation:TRANsition2:TIME

Description
Sets/gets the Trans 2 Step - Step Time

Setting parameter
<sim step time> | MINimum | MAXimum
<sim step time> ::= <REAL>
<REAL> → Step Time: 0.0000, 0.0010 to 999.9999, Resolution 0.0001
MINimum → 0.0000
MAXimum → 999.9999

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:TRAN2:TIME 10

Query example
SIM:TRAN2:TIME?

Response example
10.0000

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.38 Set Parameter for Trans 2 Step Parameter (Enabled at Edit Mode): Set Synchronization Output
[:SOURce]:SIMulation:TRANsition2:CODE

Description
Sets/gets the Trans 2 Step - step sync output

Setting parameter
[code] | MINimum | MAXimum
[code] ::= <INT>

<INT> → Step sync output: 0 to 3, Resolution 1
MINimum → 0
MAXimum → 3

Query parameter
[MNimum | MXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
SIM:TRAN2:CODE 1

Query example
SIM:TRAN2:CODE?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.39 Set Parameter for Trans 2 Step (Enabled at Edit Mode): Set Trigger Output (G4)
[:SOURce]:SIMulation:TRANSition2:TRIGger[:STATe]

Description
Sets/gets the Trans 2 Step trigger (G4)

Setting parameter
〈state〉 ::= 〈BOL〉
〈BOL〉 → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
〈NBOL〉

Setting example
SIM:TRAN2:TRIG ON

Query example
SIM:TRAN2:TRIG?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.40 Set Parameter for Normal 2 Step Parameter (Enabled at Edit Mode): Set Execution Time
[:SOURce]:SIMulation:NORMal2:TIME

Description
Sets/gets the Normal 2 Step Step Time
The short form of NORMal2 is NORM2. "2" cannot be omitted.

Setting parameter
<sim step time> | MINimum | MAXimum
<sim step time> ::= <REAL>
<REAL> → Step Time: 0.0010 to 999.9999, Resolution 0.0001
MINimum → 0.0010
MAXimum → 999.9999

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:NORM2:TIME 10

Query example
SIM:NORM2:TIME?

Response example
10.0000

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
Set Parameter for Normal 2 Step (Enabled at Edit Mode): Set Whether to Enable/Disable Start Phase Specification

[:SOURce]:SImulation:NORMal2:PHASE:START:ENABLE

Description
Sets/gets whether to enable/disable the Normal 2 Step start phase
The short form of NORMal2 is NORM2. ”2” cannot be omitted.

Setting parameter
<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:NORM2:PHASE:START:ENABLE ON

Query example
SIM:NORM2:PHASE:START:ENABLE?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.42 Set Parameter for Normal 2 Step (Enabled at Edit Mode): Set Start Phase
[:SOURce]:SIMulation:NORMal2:PHASe:STARt[:IMMediate]

Description
Sets gets the Normal 2 Step start phase
The short form of NORMal2 is NORM2. "2" cannot be omitted.

Setting parameter

<phase> | MINimum | MAXimum

<phase> ::= <REAL>

<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter

[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:NORM2:PHAS:STAR 0

Query example
SIM:NORM2:PHAS:STAR?

Response example
0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.43 Set Parameter for Normal 2 Step (Enabled at Edit Mode): Set Whether to Enable/Disable Stop Phase Specification

[:SOURce]:SIMulation:NORMal2:PHASe:STOP:ENABle

Description
Sets/gets whether to enable/disable the Normal 2 Step stop phase
The short form of NORMal2 is NORM2. "2" cannot be omitted.

Setting parameter
<state> ::= <BOL>

<BOL> → 0/OFF: Disable, 1/ON: Enable

Query parameter
None

Response format
<NBOL>

Setting example
SIM:NORM2:PHAS:STOP:ENAB ON

Query example
SIM:NORM2:PHAS:STOP:ENAB?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.44 Set Parameter for Normal 2 Step Parameter (Enabled at Edit Mode): Set Stop Phase
[:SOURce]:SIMulation:NORMal2:PHASe:STOP[:IMMediate]

Description
Sets/gets the Normal 2 Step stop phase
The short form of NORMal2 is NORM2. "2" cannot be omitted.

Setting parameter
<phase> | MINimum | MAXimum
<phase> ::= <REAL>
<REAL> → Phase: 0.0 to 359.9, Resolution 0.1
MINimum → 0.0
MAXimum → 359.9

Query parameter
[MINimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<NR2>

Setting example
SIM:NORM2:PHAS:STOP 0

Query example
SIM:NORM2:PHAS:STOP?

Response example
0.0

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.45 Set Parameter for Normal 2 Step Parameter (Enabled at Edit Mode): Set Synchronization Output

[:SOURce]:SIMulation:NORMal2:CODE

Description
Sets/gets the Normal 2 Step step sync output
The short form of NORMal2 is NORM2. "2" cannot be omitted.

Setting parameter
<code> | MINimum | MAXimum
<code> ::= <INT>
<INT> → Step sync output: 0 to 3, Resolution 1
MINimum → 0
MAXimum → 3

Query parameter
[MNInimum | MAXimum]
MINimum → Gets the minimum value
MAXimum → Gets the maximum value

Response format
<INT>

Setting example
SIM:NORM2:CODE 1

Query example
SIM:NORM2:CODE?

Response example
1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.46 Set Parameter for Normal 2 Step (Enabled at Edit Mode): Set Trigger Output (G5)

`:SOURce`:SIMulation:NORMal2:TRIGger[:STATe]

Description
Sets/gets the Normal 2 Step trigger (G5)
The short form of NORMal2 is NORM2. "2" cannot be omitted.

Setting parameter

\[
\langle \text{state} \rangle := \langle \text{BOL} \rangle
\]

\[
\langle \text{BOL} \rangle \rightarrow 0/\text{OFF}: \text{Disable}, 1/\text{ON}: \text{Enable}
\]

Query parameter
None

Response format

\[
\langle \text{NBOL} \rangle
\]

Setting example

SIM:NORM2:TRIG ON

Query example

SIM:NORM2:TRIG?

Response example

1

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting/query can be made only in the simulation edit state.
4.2.4.47 Initialize/Read/Save Simulation (Enabled at Edit Mode): Initialize Simulation Data

:TRACe|DATA:SIMulation:CLEar

Description

Initializes the simulation data

Setting parameter

\[\langle \text{sim memory} \rangle \mid \text{MINimum} \mid \text{MAXimum} \]

\[
\langle \text{sim memory} \rangle ::= \langle \text{INT} \rangle
\]

\[
\langle \text{INT} \rangle \rightarrow 0 \text{ to } 5
\]

0 : Simulation data being edited

1 to 5 : Simulation Memory number 1-5

MINimum \rightarrow 0

MAXimum \rightarrow 5

Setting example

TRAC:SIM:CLEAR 1

Remarks

The operation cannot be done unless the Sequence or Simulation function option is enabled.

The setting is ignored during the System Lock/warning.

The response message to the query is not returned during the System Lock.

The operation cannot be done unless the output function is the Simulation.
4.2.4.48 Initialize/Read/Save Simulation (Enabled at Edit Mode): Simulation Data Name
:TRACe|DATA:SIMulation:NAME

Description
Sets/gets the simulation data name

Setting parameter
\{<sim memory> | MINimum | MAXimum},<name>

- <sim memory> ::= <INT>
 - <INT> → 1 to 5: Simulation Memory number 1-5
- MINimum → 1
- MAXimum → 5
- <name> ::= <STR>
 - <STR> → Simulation data name
 - The simulation data name should contain 20 one-byte characters (alphanumeric characters) or less.
 - However, the following 9 characters cannot be used:
 \ / : * ? “ < > |

Query parameter
\<sim memory> | MINimum | MAXimum

- <sim memory> ::= <INT>
- <INT> → 1 to 5: Simulation Memory number 1-5
- MINimum → 1
- MAXimum → 5

Setting example
TRAC:SIM:NAME 1,"SIM1"

Query example
TRAC:SIM:NAME? 1

Response example
"SIM1"

Remarks
The setting/query cannot be done unless the Sequence or Simulation function option is enabled.
The setting is ignored during the System Lock/warning.
The response message to the query is not returned during the System Lock.
The setting cannot be done unless the output function is the Simulation.
4.2.4.49 Initialize/Read/Save Simulation (Enabled at Edit Mode): Read Simulation Data

:TRACe|DATA:SIMulation:RECall

Description

Reads the simulation data

Setting parameter

<sim memory> | MINimum | MAXimum
<sim memory> ::= <INT>
<INT> → Simulation Memory number: 1 to 5
MINimum → 1
MAXimum → 5

Setting example

TRAC:SIM:REC 1

Remarks

The operation cannot be done unless the Sequence or Simulation function option is enabled.
The command is ignored during the System Lock/warning.
The operation cannot be done unless the output function is the Simulation.

4.2.4.50 Initialize/Read/Save Simulation (Enabled at Edit Mode): Save Simulation Data

:TRACe|DATA:SIMulation:STORe

Description

Saves the simulation data

Setting parameter

<sim memory> | MINimum | MAXimum
<sim memory> ::= <INT>
<INT> → Simulation Memory number: 1 to 5
MINimum → 1
MAXimum → 5

Setting example

TRAC:SIM:STOR 1

Remarks

The operation cannot be done unless the Sequence or Simulation function option is enabled.
The command is ignored during the System Lock/warning.
The operation cannot be done unless the output function is the Simulation.
5. Programming Sample

5.1 DP Series Control Programming 218
5.2 Continuous Function Setting 219
5.3 Sequence Function Control 222
5.4 Simulation Function Control 224
5.5 Obtain Status Register 226
5.6 Cautions in Programming 228
5.1 DP Series Control Programming

This section explains how to remote-control the DP series from the personal computer through the USB interface.

This section assumes an understanding of the VISA (Virtual Instrument System Architecture) programming interface and programming language supported by the VISA library.

Programming Environment: Microsoft's .net 2.0 or higher with C# language
 For other programming environments, see the respective reference.

This section describes:

a) Continuous output setting
 Switch the output function mode to Continuous, make the output setting, then turn on the output. After that, use the measurement function to read the measured output value.

b) Sequence function control
 Switch the output function mode to Sequence, read the sequence data pre-stored in the main unit, and start the sequence execution. After that, use the measurement function to read the measured output value.

c) Simulation function control
 Switch the output function mode to Simulation, read the simulation data pre-stored in the main unit, and start the power fluctuation simulation. After that, use the measurement function to read the measured output value.

d) Obtain status register
 After setting the warning status transition filter and the warning event enable register, obtain the status byte to check for the warning state.

These explanations are intended for helping you understand the remote command control procedure, and thus omit general programming considerations such as error detection processing and variable initialization processing.

For the VISA library installation, see the document from the VISA library distributors.
5.2 Continuous Function Setting

using System.Windows.Forms;

// <Process flow>
// Initialize the communication state.
// NameSpace declaration of NI-VISA library
using NationalInstruments.VisaNS;

// Search for DP series using the resource string
string[] strResNames;

// Generate the VISA session of the NI-VISA library
ResourceManager rm;
rm = ResourceManager.GetLocalManager();

// Use the VISA session to specify the DP series serial number and
// establish the communication session with the DP series
//
// In your program, write the exception handling.
// Use catch to write the error handling when communication session is established.
// Whenever an error occurs, NI-VISA library throws it to the exception.
//
strResNames = rm.FindResources("USB0::0x0D4A::0x001A::0000000::INSTR");
MessageBasedSession dp;
dp = new MessageBasedSession(strResNames[0]);

// Set to the Remote State
new UsbSession(dp.ResourceName).ControlRen(RenMode.Assert);

// Clear the device
dp.Clear();

// Clear the error status
dp.Write("*CLS");
System.Threading.Thread.Sleep(1000);

// Set the output function to Continuous.
dp.Write(":\SYSTe:m:CONFig:MODE CONTinuous");
System.Threading.Thread.Sleep(1000);
// ■Return the DP series to the initial state just after the startup.
// Return the output setting to the state just after the startup.
dp.WriteLine("*RST");
System.Threading.Thread.Sleep(1000);

// ■Set the output mode.
dp.WriteLine(":SOURce:MODE AC_INT");
System.Threading.Thread.Sleep(1000);

// ■Set the output range.
dp.WriteLine(":SOURce:RANGe R100V");
System.Threading.Thread.Sleep(1000);

// ■Set the output waveform.
dp.WriteLine(":SOURce:FUNCTION:SHAPE:IMMediate SIN");
System.Threading.Thread.Sleep(1000);

// ■Set the output frequency.
dp.WriteLine(":SOURce:FREQuency:IMMediate 50.0");
System.Threading.Thread.Sleep(1000);

// ■Set the output voltage.
dp.WriteLine(":SOURce:VOLTage:LEVel:IMMediate:AMPLitude 100.0");
System.Threading.Thread.Sleep(1000);

// ■Turn on the output.
dp.WriteLine(":OUTPut:STATe ON");
System.Threading.Thread.Sleep(1000);

// ■Obtain the measured output voltage value.
string strMeasureVoltageRMS = "";
strMeasureVoltageRMS = dp.Query(":MEASure:SCALar:VOLTage:RMS?");

// ■Obtain the measured output current value.
string strMeasureCurrentRMS = "";
strMeasureCurrentRMS = dp.Query(":MEASure:SCALar:CURRent:RMS?");

// ■Turn off the output.
dp.WriteLine(":OUTPut:STATe OFF");
// Clear the Remote state
new UsbSession(dp.ResourceName).ControlRen(RenMode.Deassert);

// Terminate the communication and release the session.
dp.Terminate();
dp.Dispose();
5.3 Sequence Function Control

using System.Windows.Forms;

// <Process flow>
// Initialize the communication state.
// NameSpace declaration of NI-VISA library
using NationalInstruments.VisaNS;

// Search for DP series using the resource string
string[] strResNames;

// Generate the VISA session of the NI-VISA library
ResourceManager rm;
rm = ResourceManager.GetLocalManager();

// Use the VISA session to specify the DP series serial number and
// establish the communication session with the DP series
//
// In your program, write the exception handling.
// Use catch to write the error handling when communication session is established.
// Whenever an error occurs, NI-VISA library throws it to the exception.
//
strResNames = rm.FindResources("USB0::0x0D4A::0x001A::0000000::INSTR");
MessageBasedSession dp;
dp = new MessageBasedSession(strResNames[0]);

// Set to the Remote State
new UsbSession(dp.ResourceName).ControlRen(RenMode.Assert);

// Clear the device
dp.Clear();

// Clear the error status
dp.Write("**CLS");
System.Threading.Thread.Sleep(1000);

// Set the output function to Sequence.
dp.Write("SYSTEM:CONFIGURE:MODE SEQuence");
System.Threading.Thread.Sleep(1000);
Recall the sequence data from the Sequence Memory 1.
```
dp.Write(":^TRACe:SEQuence:RECall 1");
System.Threading.Thread.Sleep(1000);
```

Compile the sequence data.
```
dp.Write(":^TRIGger:SEQuence:COMPile");
System.Threading.Thread.Sleep(1000);
```

Turn on the output.
```
dp.Write(":^OUTPut:STATe ON");
System.Threading.Thread.Sleep(1000);
```

Start the sequence.
```
dp.Write(":^TRIGger:SEQuence:SELection:EXECute STARt");
System.Threading.Thread.Sleep(1000);
```

Obtain the measured output voltage value.
```
string strMeasureVoltageRMS = ";
strMeasureVoltageRMS = dp.Query(":^MEASure:SCALar:VOLTage:RMS?\"");
```

Obtain the measured output current value.
```
string strMeasureCurrentRMS = ";
strMeasureCurrentRMS = dp.Query(":^MEASure:SCALar:CURREnt:RMS?\"");
```

Turn off the output.
```
dp.Write(":^OUTPut:STATe OFF");
System.Threading.Thread.Sleep(1000);
```

Change to the Edit mode.
```
dp.Write(":^SOURce:SEQuence:EDIT");
```

Clear the Remote state
```
new UsbSession(dp.ResourceName).ControlRen(RenMode.Deassert);
```

Terminate the communication and release the session.
```
dp.Terminate();
dp.Dispose();
```
5.4 Simulation Function Control

using System.Windows.Forms;

// <Process flow>
// Initialize the communication state.
// NameSpace declaration of NI-VISA library
using NationalInstruments.VisaNS;

// Search for DP series using the resource string
string[] strResNames;

// Generate the VISA session of the NI-VISA library
ResourceManager rm;
rm = ResourceManager.GetLocalManager();

// Use the VISA session to specify the DP series serial number and
// establish the communication session with the DP series
//
// In your program, write the exception handling.
// Use catch to write the error handling when communication session is established.
// Whenever an error occurs, NI-VISA library throws it to the exception.
//
strResNames = rm.FindResources("USB0::0x0D4A::0x001A::00000000::INSTR");
MessageBasedSession dp;
dp = new MessageBasedSession(strResNames[0]);

// Set to the Remote State
new UsbSession(dp.ResourceName).ControlRen(RenMode.Assert);

// Clear the device
dp.Clear();

// Clear the error status
dp.Write("*CLS");
System.Threading.Thread.Sleep(1000);

// Set the output function to Simulation.
dp.Write(":*SYSTem:CONFig:MODE SIMulation");
System.Threading.Thread.Sleep(1000);
Recall the power fluctuation simulation data from the Simulation Memory 1.
```
dp.Write("::TRACe:SIMulation:RECall 1");
System.Threading.Thread.Sleep(1000);
```

Compile the simulation data.
```
dp.Write("::TRIGger:SIMulation:COMPile");
System.Threading.Thread.Sleep(1000);
```

Turn on the output.
```
dp.Write("::OUTPut:STATe ON");
System.Threading.Thread.Sleep(1000);
```

Starts the Simulation.
```
dp.Write("::TRIGger:SIMulation:SELected:EXECute STARt");
System.Threading.Thread.Sleep(1000);
```

Obtain the measured output voltage value.
```
string strMeasureVoltageRMS = "";
strMeasureVoltageRMS = dp.Query("::MEASure:SCALar:VOLTage:RMS?");
```

Obtain the measured output current value.
```
string strMeasureCurrentRMS = "";
strMeasureCurrentRMS = dp.Query("::MEASure:SCALar:CURRent:RMS?");
```

Turn off the output.
```
dp.Write("::OUTPut:STATe OFF");
System.Threading.Thread.Sleep(1000);
```

Change to the Edit mode.
```
dp.Write("::SOURce:SIMulation:EDIT");
```

Clear the Remote state
```
new UsbSession(dp.ResourceName).ControlRen(RenMode.Deassert);
```

Terminate the communication and release the session.
```
dp.Terminate();
dp.Dispose();
```
5.5 Obtain Status Register

using System.Windows.Forms;

// <Process flow>
// ■Initialize the communication state.
// NameSpace declaration of NI-VISA library
using NationalInstruments.VisaNS;

// Search for DP series using the resource string
string[] strResNames;

// Use the VISA session to specify the DP series serial number and
// establish the communication session with the DP series
// In your program, write the exception handling.
// Use catch to write the error handling when communication session is established.
// Whenever an error occurs, NI-VISA library throws it to the exception.
//
strResNames = rm.FindResources("USB0::0x0D4A::0x001A::0000000::INSTR");
MessageBasedSession dp;
dp = new MessageBasedSession(strResNames[0]);

// Set to the Remote State
new UsbSession(dp.ResourceName).ControlRen(RenMode.Assert);

// Clear the device
dp.Clear();

// Clear the error status
dp.Write("*CLS");
System.Threading.Thread.Sleep(1000);

// Set the warning transition filter (positive logic)
dp.Write(":*STATus:WARNing:PTRansition 65535");
System.Threading.Thread.Sleep(1000);

// Set permission of the warning event register
dp.Write(":*STATus:WARNing:ENABle 65535");
System.Threading.Thread.Sleep(1000);
// Obtain the status byte to check if the warning state is detected

// ReadStatusByte() needs to be repeatedly queried in order to detect the change
// in each bit of the register.
// In actual programming, the status byte is acquired by worker-threading or
// other means.

StatusByteFlags sbFlag = 0;
sbFlag = dp.ReadStatusByte();

short sFlag = (short)sbFlag;

// Status changes
if (sFlag != 0)
{
 // Is the warning register detected?
 if ((sFlag & 2) == 2)
 {
 // Obtain the warning state
 string strWarn = "";
 strWarn = dp.Query(":STATus:WARNing:CONDition?");

 System.Threading.Thread.Sleep(1000);

 // Release the warning
 // This also clears the warning screen display on the DP series.
 dp.Write(":SYSTem:WRElease");
 System.Threading.Thread.Sleep(1000);
 }
}

// Clear the Remote state
new UsbSession(dp.ResourceName).ControlRen(RenMode.Deassert);

// Terminate the communication and release the session.
dp.Terminate();
dp.Dispose();
5.6 Cautions in Programming

a) When a program command send from the computer is interrupted on the way, an error may occur in the next program command. If there was an interruption on the way, perform the device clear.

b) When the computer interrupts receiving on the way after the computer sent a query message then data transfer was started with the DP series specified as talker, the DP series may freeze awaiting for send. If there was an interruption on the way, perform the device clear.

c) After the computer sent a query message, if the computer sends another query message without specifying the DP series as talker, the response to the first query may be returned with the trailing response to the next one (without delimiter).

When the DP series does not work as talker after a query message is sent, perform the device clear.
6. Error Message List
6.1 Error Message List

Table 6.1 shows the list of error messages.

<table>
<thead>
<tr>
<th>ID</th>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
<td>There is no error.</td>
</tr>
<tr>
<td>-100</td>
<td>Command error</td>
<td>An illegal command was received.</td>
</tr>
<tr>
<td>-102</td>
<td>Syntax error</td>
<td>An undefined command or parameter was received.</td>
</tr>
<tr>
<td>-103</td>
<td>Invalid separator</td>
<td>An illegal separator was received.</td>
</tr>
<tr>
<td>-104</td>
<td>Data type error</td>
<td>The received command or parameter was undefined, and thus was recognized as an illegal command.</td>
</tr>
<tr>
<td>-108</td>
<td>Parameter not allowed</td>
<td>There are too many parameters.</td>
</tr>
<tr>
<td>-109</td>
<td>Missing parameter</td>
<td>One or more parameters are missing.</td>
</tr>
<tr>
<td>-110</td>
<td>Command header error</td>
<td>There is an error in the command header.</td>
</tr>
<tr>
<td>-111</td>
<td>Header separator error</td>
<td>There is an error in the keyword separator of the command header.</td>
</tr>
<tr>
<td>-113</td>
<td>Undefined header</td>
<td>The received string contains an invalid header.</td>
</tr>
<tr>
<td>-120</td>
<td>Numeric data error</td>
<td>There is an error in the numerical parameter.</td>
</tr>
<tr>
<td>-130</td>
<td>Suffix error</td>
<td>There is an error in the suffix of the numerical parameter.</td>
</tr>
<tr>
<td>-140</td>
<td>Character data error</td>
<td>There is an error in the discrete parameter.</td>
</tr>
<tr>
<td>-144</td>
<td>Character data too long</td>
<td>The discrete parameter is too long.</td>
</tr>
<tr>
<td>-150</td>
<td>String data error</td>
<td>There is an error in the string parameter.</td>
</tr>
<tr>
<td>-160</td>
<td>Block data error</td>
<td>There is an error in the block parameter.</td>
</tr>
<tr>
<td>-200</td>
<td>Execution error</td>
<td>An error was detected during command execution.</td>
</tr>
<tr>
<td>-222</td>
<td>Data out of range</td>
<td>A command parameter is out of the valid range.</td>
</tr>
<tr>
<td>-300</td>
<td>Device-specific error</td>
<td>This is a device-specific error.</td>
</tr>
<tr>
<td>-350</td>
<td>Queue overflow</td>
<td>The error queue overflowed and thus can no longer hold a new error.</td>
</tr>
<tr>
<td>-363</td>
<td>Input buffer overrun</td>
<td>The command input buffer overflowed.</td>
</tr>
<tr>
<td>-410</td>
<td>Query INTERRUPTED</td>
<td>A new response message entered the output queue, and thus the previous message was lost.</td>
</tr>
<tr>
<td>-420</td>
<td>Query UNTERMINATED</td>
<td>The talker was specified, but the output queue has no response message.</td>
</tr>
<tr>
<td>-430</td>
<td>Query DEADLOCKED</td>
<td>Send/receive came to a deadlock. Sending is canceled.</td>
</tr>
<tr>
<td>-440</td>
<td>Query UNTERMINATED after indefinite response</td>
<td>The response request order is wrong.</td>
</tr>
<tr>
<td>2</td>
<td>Invalid in This Output Mode</td>
<td>This output mode does not allow the setting (execution). Change the output mode.</td>
</tr>
<tr>
<td>3</td>
<td>Invalid with Output ON</td>
<td>The output on state does not allow the setting (execution). Turn the output off, then set (execute).</td>
</tr>
<tr>
<td>4</td>
<td>Invalid with Output OFF</td>
<td>The output off state does not allow the setting (execution). Turn the output on, then set (execute).</td>
</tr>
<tr>
<td>5</td>
<td>Busy</td>
<td>The busy state does not allow the setting (execution). Execute after the busy icon disappears.</td>
</tr>
<tr>
<td>6</td>
<td>Invalid with Remote Control</td>
<td>The remote control state does not allow the setting (execution). Bring the state to local control, then set (execute).</td>
</tr>
<tr>
<td>13</td>
<td>Auto Cal Disabled</td>
<td>The Autocal setting becomes off because of out of the calibration range.</td>
</tr>
<tr>
<td></td>
<td>Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>AGC Disabled</td>
<td>The AGC setting becomes off because of out of the calibration range.</td>
</tr>
<tr>
<td>20</td>
<td>Invalid</td>
<td>The condition cannot be set (executed).</td>
</tr>
<tr>
<td>24</td>
<td>USB Memory Unconnected</td>
<td>No USB memory is connected. Connect a USB memory.</td>
</tr>
<tr>
<td>25</td>
<td>USB Memory Removed illegally</td>
<td>The USB memory was removed before the eject operation. Perform the eject operation before removing a USB memory.</td>
</tr>
<tr>
<td>26</td>
<td>USB Memory Access Error</td>
<td>The USB memory has an access error.</td>
</tr>
<tr>
<td>27</td>
<td>Too Many Files</td>
<td>There are too many files in the USB memory. Each folder can contain 500 files or less.</td>
</tr>
<tr>
<td>29</td>
<td>Sync Frequency Unlocked</td>
<td>The output cannot be turned on because of not locking to the synchronization frequency.</td>
</tr>
<tr>
<td>30</td>
<td>Remote Controller Error</td>
<td>Communication with the remote controller cannot be made. Make sure the remote controller cable is connected properly.</td>
</tr>
<tr>
<td>31</td>
<td>Internal Memory Error</td>
<td>The internal memory has an error.</td>
</tr>
<tr>
<td>32</td>
<td>Calibration Data Error ME</td>
<td>The adjustment data is abnormal. Cycle the power. If it still occurs, contact the seller (NF Corporation or our agent) from whom you purchased the product.</td>
</tr>
<tr>
<td>33</td>
<td>Line Overvoltage</td>
<td>The power input voltage is excessive. Check if the power input is appropriate.</td>
</tr>
<tr>
<td>34</td>
<td>Line Undervoltage</td>
<td>The power input voltage is insufficient. Check if the power input is appropriate.</td>
</tr>
<tr>
<td>35</td>
<td>Line Frequency Error</td>
<td>The power input frequency is abnormal. Check if the power input is appropriate.</td>
</tr>
<tr>
<td>36</td>
<td>Communication Failure PU</td>
<td>There is a communication error between the firmware and the power unit. Cycle the power. If it still occurs, contact the seller (NF Corporation or our agent) from whom you purchased the product.</td>
</tr>
<tr>
<td>37</td>
<td>Communication Failure ME</td>
<td>There is a communication error between the firmware and the output measurement section. Cycle the power. If it still occurs, contact the seller (NF Corporation or our agent) from whom you purchased the product.</td>
</tr>
<tr>
<td>38</td>
<td>Communication Failure SC</td>
<td>The polyphase system communication is abnormal. Make sure the System Cable is connected properly.</td>
</tr>
<tr>
<td>40</td>
<td>Polyphase Connection Timeout</td>
<td>In the polyphase system, the connection destination cannot be recognized in the specified time. Make sure the System Cable is connected properly, then turn on the power of all the cabinets in 20 seconds. A single-phase model connected to a polyphase model also generates this error.</td>
</tr>
<tr>
<td>41</td>
<td>Mismatched Firmware Versions</td>
<td>In the polyphase system, the main firmware versions of the cabinets do not match.</td>
</tr>
<tr>
<td>45</td>
<td>Mismatched Cabinet Connect</td>
<td>In the polyphase system, the output capacities of the phases do not match.</td>
</tr>
<tr>
<td>46</td>
<td>Inhibited Cabinet Connect</td>
<td>Polyphase models are connected with the System Cable. Use a polyphase model alone.</td>
</tr>
<tr>
<td>47</td>
<td>No Available Power Unit</td>
<td>There is no power unit that can be started.</td>
</tr>
<tr>
<td>68</td>
<td>PU-ON Setting Updated</td>
<td>The power unit power-on setting was updated.</td>
</tr>
<tr>
<td>69</td>
<td>Polyphase Connection Updated</td>
<td>A phase configuration is detected that is different from the previous one.</td>
</tr>
<tr>
<td>No.</td>
<td>Error Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>82</td>
<td>Sequence Compile Error</td>
<td>Sequence compilation failed.</td>
</tr>
<tr>
<td>83</td>
<td>Simulation Compile Error</td>
<td>Simulation compilation failed.</td>
</tr>
<tr>
<td>84</td>
<td>System Updated Please Reboot</td>
<td>The firmware was updated.</td>
</tr>
<tr>
<td>85</td>
<td>System Updated Please Reboot</td>
<td>The firmware was updated.</td>
</tr>
<tr>
<td>87</td>
<td>Unbalanced Line Voltage</td>
<td>In the polyphase system, there is a cabinet with a different power supply voltage. Use the same power supply voltage.</td>
</tr>
<tr>
<td>88</td>
<td>12V Error</td>
<td>The internal auxiliary power is abnormal.</td>
</tr>
</tbody>
</table>
7. Specifications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Interface Functions</td>
<td>234</td>
</tr>
<tr>
<td>7.2 GPIB Bus Driver</td>
<td>234</td>
</tr>
<tr>
<td>7.3 Code Used</td>
<td>235</td>
</tr>
<tr>
<td>7.4 Response to Interface Message</td>
<td>235</td>
</tr>
<tr>
<td>7.5 Multi-Line Interface Message</td>
<td>236</td>
</tr>
</tbody>
</table>
7.1 Interface Functions

Table 7.1 Interface Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Subset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source handshake</td>
<td>SH1</td>
<td>All send handshake functions provided</td>
</tr>
<tr>
<td>Acceptor handshake</td>
<td>AH1</td>
<td>All receive handshake functions provided</td>
</tr>
<tr>
<td>Talker</td>
<td>T6</td>
<td>Basic talker functions, Talker release by the MLA</td>
</tr>
<tr>
<td>Listener</td>
<td>L4</td>
<td>Basic listener functions, Listener release by the MTA</td>
</tr>
<tr>
<td>Service request</td>
<td>USBTMC</td>
<td>All service request functions provided</td>
</tr>
<tr>
<td></td>
<td>GPIB</td>
<td>Service request function not provided</td>
</tr>
<tr>
<td>Remote/Local</td>
<td>RL1</td>
<td>All remote/local functions provided</td>
</tr>
<tr>
<td>Parallel poll</td>
<td>PP0</td>
<td>Parallel poll function not provided</td>
</tr>
<tr>
<td>Device clear</td>
<td>DC1</td>
<td>All device clear functions provided</td>
</tr>
<tr>
<td>Device trigger</td>
<td>DT0</td>
<td>Device trigger function not provided</td>
</tr>
<tr>
<td>Controller</td>
<td>C0</td>
<td>Controller function not provided</td>
</tr>
</tbody>
</table>

7.2 GPIB Bus Driver

Table 7.2 Bus Driver Specifications

<table>
<thead>
<tr>
<th>Data bus</th>
<th>DIO1 to 8</th>
<th>Open collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handshake bus</td>
<td>NRFD, NDAC, DAV</td>
<td>Open collector tri-state</td>
</tr>
<tr>
<td>Management bus</td>
<td>SRQ, EOI</td>
<td>Open collector tri-state</td>
</tr>
</tbody>
</table>
7.3 Code Used

The DP series as the listener can accept ISO 7-bit codes (JIS/ASCII), except when receiving binary data, and ignores MSB of 8-bit data (e.g., parity). Any program codes are interpreted and executed with no case sensitivity. However, the control characters except <CR>, <LF>, and <TAB> (codes from 0 to 8, B, D to 1F, and 7F in hexadecimal) are ignored.

As the talker, it sends ISO 7-bit codes (JIS or ASCII) with no parity except when sending binary data (MSB of 8-bit data = 0). All alphabetical characters in the program code are sent in uppercase.

When binary data is sent and received, all 8-bit patterns are valid and the standard IEEE floating point format (including any control codes) is supported.

7.4 Response to Interface Message

Table 7.3 Response to Interface Message

| IFC | • Initialize the GPIB interface message.
| DCL and SDC | • Release the specified listener or talker.
| LLO | • Clear the I/O buffer for GPIB.
| GTL | • Disable the LOCAL key on the panel.
| | • Turn to the Local state.

7.5 Multi-Line Interface Message

Figure 7.1 Multi-Line Interface Message

<table>
<thead>
<tr>
<th>*2 b7 b6 b5 b4 b3 b2 b1</th>
<th>Column</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b7 b6 b5 b4 b3 b2 b1</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 0 0</td>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

*1 MSG means an interface message

*2 b1=DIO1...b7=DIO7. DIO8 is not used

*3 Accompanied by the secondary command

*4 "\" for IEC standard, "¥" for JIS

<table>
<thead>
<tr>
<th>Listener address assigned to the device</th>
<th>Talker address assigned to the device</th>
<th>Listener address assigned to the device</th>
<th>Talker address assigned to the device</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCT : Take Control</td>
<td>LLO : Local Lockout</td>
<td>DCL : Device Clear</td>
<td>PPU : Parallel Poll Unconfigure</td>
</tr>
<tr>
<td>HT: TCT</td>
<td>EM: EMP</td>
<td>SPD: Serial Poll Disable</td>
<td>PPC: Parallel Poll Configure</td>
</tr>
<tr>
<td>SUB: SUB</td>
<td>GS: GS</td>
<td>M: M</td>
<td>UNL: Unlisten</td>
</tr>
<tr>
<td>VT: VT</td>
<td>FS: FS</td>
<td>N: N</td>
<td>o: Untalk</td>
</tr>
<tr>
<td>FF: FF</td>
<td>H: H</td>
<td>K: K</td>
<td>DEL: Delisten</td>
</tr>
</tbody>
</table>

Note:

*1 MSG means an interface message

*2 b1=DIO1...b7=DIO7. DIO8 is not used

*3 Accompanied by the secondary command

*4 "\" for IEC standard, "¥" for JIS
NOTES

- Reproduction of the contents of this manual is forbidden by applicable laws.
- The contents of this manual may be revised without notice.
- Information provided in this manual is intended to be accurate and reliable. However, we assume no responsibility for any damage regarding the contents of this manual.
- Should you notice any doubtful or wrong statement, or lack of description, please contact us or our agent.

©Copyright 2010, NF Corporation

Programmable AC Power Source DP Series
Instruction Manual
(Remote Control)

NF Corporation
6-3-20, Tsunashima Higashi, Kohoku-ku, Yokohama
223-8508 JAPAN
Phone +81-45-545-8128 Fax +81-45-545-8187