CD-552R series detectors are on-board phase detectors possessing frequencies falling within the range of 1kHz to 200kHz for CD-552R3 and frequencies falling within the range of 10kHz to 2MHz for CD-552R4. The signal system is composed of the phase sensitive detector (PSD), low-pass filter (LPF), and output amplifier. A low-pass expansion of output low-pass filter cut-off frequency is available with the addition of one external resistor, and the gain setting (=1 to ×10) is also enabled. The reference signal system consists of a 0°-90° phase shifter (PAT.P) and 50%-duty circuit (PAT.P), which enables the detection of A sin φ or A cos φ phase. The phase detection with double frequency is permitted if 2f mode is placed through the connection with the specified pin.

CD-552R series detectors are in a static-shielded 20-pin single inline package.

### Absolute maximum ratings

<table>
<thead>
<tr>
<th>Category</th>
<th>CD-552R3</th>
<th>CD-552R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (Vdc)</td>
<td>±18V</td>
<td>±18V</td>
</tr>
<tr>
<td>Signal input voltage (Vpp)</td>
<td>±5.0V</td>
<td>±5.0V</td>
</tr>
<tr>
<td>Logic control voltage (Vpp)</td>
<td>±5.0V</td>
<td>±5.0V</td>
</tr>
</tbody>
</table>

### Signal system

#### Model

<table>
<thead>
<tr>
<th>Input impedance</th>
<th>CD-552R3</th>
<th>CD-552R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. 10kΩ ±1% at 1kHz</td>
<td>Max. 2.5kΩ ±5% at 10kHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear maximum voltage (Vpp)</th>
<th>Min. ±10V</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Allowable slew rate (V/µs)</th>
<th>Max. 5V/µs</th>
<th>Max. 130V/µs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Phase detector</th>
<th>Synchronous rectifying type by square-wave multiplication</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Detection characteristics</th>
<th>Output voltage (Vpp) +5.5/-0.5V, ±5.5/-0.5V</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Operating frequency range</th>
<th>1kHz to 200kHz</th>
<th>10kHz to 2MHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gain (V/º)</th>
<th>1Vpp/1º (one-wave): Pins ① and ② open 10Vpp/1º (one-wave): Short in Pins ① and ② Selectable in the 1 to 10-Vpp/º-p with the external resistor (Pins ① and ②)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gain accuracy</th>
<th>±3%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Phase difference (º)</th>
<th>-0.05º (typ) at 1kHz, -8º (typ) at 200kHz, +13º (typ) at 2MHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Operating frequency range</th>
<th>1kHz to 100kHz</th>
<th>10kHz to 1MHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Detection output</th>
<th>Pins ①-② shorted, Low-pass expansion is enabled with an external resistor or capacitor.</th>
<th>Pins ①-② shorted, Low-pass expansion is enabled with an external resistor or capacitor.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>1-pin (8/B oct)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cut-off frequency</th>
<th>PINS ①-② shorted, Low-pass expansion is enabled with an external resistor or capacitor.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Detection output</th>
<th>Output impedance (Vpp) ±50Ω ±10% at 1kHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Linear maximum voltage (Vpp)</th>
<th>±10V (DC, Load resistance 2kΩ)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Linear maximum input voltage (Vpp)</th>
<th>±15V (DC)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Offset voltage (Vpp)</th>
<th>±15mV, ±5mV (typ)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Offset voltage adjustment</th>
<th>Short in input, Gain: 1Vpp/º-p</th>
</tr>
</thead>
</table>

### Reference signal system

#### Model

<table>
<thead>
<tr>
<th>Input circuit</th>
<th>CMOS Schmitt trigger, pulled up at 1kHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>CMOS (50±5V) level</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unipolar (1f) mode</th>
<th>A rising or falling edge is regarded as a reference.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bipolar (2f) mode</th>
<th>Both rising and falling edge are regarded as a reference.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mode setting</th>
<th>Connected with the reference signal input (Pin ⑧) and polarity switch input (Pin ⑨)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input waveform duty</th>
<th>Duty: 50%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input frequency range</th>
<th>1kHz to 100kHz</th>
<th>10kHz to 1MHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0°-90° phase shifter</th>
<th>Function</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>This enables the detection of COS or SIN through a 0°-90° phase shift of reference signal input (Pin ⑧).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Control input circuit</th>
<th>CMOS Schmitt trigger, pulled up at 100 kHz</th>
</tr>
</thead>
</table>

### Others

#### Recommended supply voltage

<table>
<thead>
<tr>
<th>Pin ⑧supply voltage</th>
<th>±15V ±1V</th>
</tr>
</thead>
</table>

#### Quiescent current

<table>
<thead>
<tr>
<th>Pin ⑧supply voltage</th>
<th>±25mA, ±20mA (typ)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pin ⑧supply voltage</th>
<th>±30mA, ±26mA (typ)</th>
</tr>
</thead>
</table>

#### Temperature (°C) Operation (°C)

<table>
<thead>
<tr>
<th>Temperature (°C) Operation (°C)</th>
<th>-20°C to 70°C, 10 to 90%RH</th>
</tr>
</thead>
</table>

#### Humidity range (°C) Storage (°C)

<table>
<thead>
<tr>
<th>Temperature (°C) Storage (°C)</th>
<th>-30°C to 80°C, 10 to 90%RH</th>
</tr>
</thead>
</table>

#### Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>67×10.5×20mm (protrusion not included)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weight (NET)</th>
<th>Approx. 20g</th>
</tr>
</thead>
</table>

Note: The following specifications are applied unless otherwise specified:

- 23±5°C, Supply voltage: ±15V
This is used to switch the internal phase shifter between 0° and 90°, which enables the switching of detector input/output between A sin φ and A cos φ.

HI: A•cos φ (0°) (specified when the pin is open)
LO: A•sin φ (90°)

This is used to switch the reference polarity of reference signals. An edge specified is a reference phase. With the REF POL terminal connected to the REF IN terminal, the phase detection with double frequency is enabled if 50% of duty is assigned to the reference signal.

HI: Rising edge regarded as a reference (specified when the pin is open)
LO: Falling edge regarded as a reference
Connected with REF IN terminal: Both rising and falling edge regarded as a reference

This is used to adjust output DC offset. ±15V is available for input, which allows both terminals of the pre-set resistor to be connected with ±15V input. The sliding terminal is connected to the OFFSET terminal. The signal is transmitted to the REF IN terminal with the SIG IN terminal connected to the ground, which brings the pre-set resistor into action to make offset adjustment.

**LPF setting**

CD-552R3/4 detectors are outfitted with the primary LPF that is capable of setting frequencies of 1kHz (10kHz) or less with the use of the external CR. Proper frequency is to be allocated, allowing for the bandwidth, responsibility, and fluctuation for output signals.

**CD-552R3**

\[ R_{\text{LPF}} = \frac{1}{2\pi \times (1\times10^{-4}\text{C})(\text{fC})} \times 15.9 \times 10^3 \Omega \]

Example: Set points

<table>
<thead>
<tr>
<th>Cut-off frequency (Equivalent noise bandwidth)</th>
<th>1Hz</th>
<th>10Hz</th>
<th>100Hz</th>
<th>1kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>1.43MΩ</td>
<td>1.58MΩ</td>
<td>143kΩ</td>
<td>0</td>
</tr>
<tr>
<td>Capacitance</td>
<td>0.1µF</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

R should remain at 2MΩ or less with the use of the external capacitor (C). Theory holds that a larger value can be assigned, but potential deterioration in offset, DC drift and noise may be concerned if assigned.

**CD-552R4**

\[ R_{\text{LPF}} = \frac{1}{2\pi \times (1\times10^{-4}\text{C})(\text{fC})} \times 15.9 \times 10^3 \Omega \]

Example: Set points

<table>
<thead>
<tr>
<th>Cut-off frequency (Equivalent noise bandwidth)</th>
<th>10Hz</th>
<th>100Hz</th>
<th>1kHz</th>
<th>10kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>140kΩ</td>
<td>1.58MΩ</td>
<td>143kΩ</td>
<td>0</td>
</tr>
<tr>
<td>Capacitance</td>
<td>0.1µF</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Characteristics CD-552R3

Gain fluctuations
Reference: 10kHz, Gain: x10

Offset voltage fluctuations
Reference: 10kHz, Gain: x10

90° phase shift fluctuations

Phase offset

Characteristics CD-552R4

Gain fluctuations
Reference: 10kHz, Gain: x10

Offset voltage fluctuations
Reference: 10kHz, Gain: x10

90° phase shift fluctuations

Phase offset
Characteristics CD-552R3

Gain accuracy – Temperature

Offset voltage – Temperature

90° phase shift accuracy – Temperature

Phase offset – Temperature

Characteristics CD-552R4

Gain accuracy – Temperature

Offset voltage – Temperature

90° phase shift accuracy – Temperature

Phase offset – Temperature

Pattern design

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.

No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

Pattern dimensions

Maximum outer dimensions

Adjacent channel pattern

Can be placed at min. 10-mm intervals if traces are in the same direction.

Signal pin land (20 pcs.)

φ1.5 land

φ0.8 through hole

Case ground land (2 pcs.)

φ4.0 land

φ2.0 through hole

Pattern dimensions

Maximum outer dimensions
To assure dynamic range and stability

### Signal pre-processing

If a sufficient S/N ratio fails to be obtained by the optimization of detector input level or setting of the output amplifier, a filter needs to be inserted in front of the detector to enhance the S/N ratio of input signal. The filter falls into the four types (low-pass, high-pass, band pass, and band elimination) and becomes a determinant of the following items: asynchronous signal frequency component, amplitude characteristics, filter characteristics, and cut-off frequency. The band pass filter attenuates all signals other than synchronization signal, which maximizes the improvement of the S/N ratio. Relatively large variations in phase around the center frequency, which may lead to detection accuracy if a phase change is made in response to temperature drift. Phase drift is minimized if low-order (1-pole if possible) Q is assigned. The low/high-pass filters attenuate low/high-pass signals, and offer the smaller improvement of the S/N ratio as compared with the band pass filter. A phase change at a pass band is curbed, which contributes to a smaller detection accuracy attributed to fluctuations in cut-off frequency. The band elimination provides large attenuation to signals of specified frequencies. An efficient improvement of the S/N ratio is obtained if specified frequency is assigned to the asynchronous signal. The least phase change at a pass band is assured, which minimizes a detection accuracy attributed to fluctuations in cut-off frequency.

### Input signal level

CD-552R3/4 detectors features 10Vp-p of the maximum input level. A dynamic range can be assured if a large level of synchronization signal is input by maintaining within 10Vp-p. The actual input signal contains both asynchronous and synchronization signals, which requires a decrease in the amplitude of 10Vp-p or less. E.g.: 0.1Vp-p synchronization signal is present in 1Vp-p signal that is a total of asynchronous and synchronization signals. CD-552R3/4 detectors performs the detection of the signals at 1Vdc of output despite the x10-post-stage DC amplifier being designated. The allowable input level enables a x10-amplifier to be inserted in front of the CD-552R3/4 detectors to input the maximum input voltage of 10Vp-p. The detection output obtains 10Vdc when the x10-post-stage DC amplifier is designated, which allows the obtaining of the maximum output signal.

### Output amplifier

The output amplifier is capitalized on to obtain a proper output level if a small detection output remains despite the optimization of input signals. CD-552R3/4 detectors are outfitted with the variable-gain output amplifiers (x1 to x10). The maximum output voltage is set at 10Vp-p that should not be surpassed when setting gain to assure proper voltage for post processor. Note that an increase in DC drift, offset voltage and output noise is considered with an increase in gain.

### Phase adjustment

Phase detection with the use of the CD-552R3/4 detectors may require phase adjustment for the optimization of detection sensitivity and cancellation of processing phase. Phase adjustment is conducted in combination with the voltage controlled phase detector CD-951V4. Continuous change in phase shift of the reference signal is enabled through DC voltage.

#### Evaluation board

A module-mounted evaluation board is available for easy evaluation of this module. Contact us for further information.
CD-951V4

CD-951V4 is a 360°-voltage controlled phase shifter in the frequency range of 1kHz to 2MHz, and adopts CMOS-level (0+5V) square wave for input and output. This is composed of the ±100°-variable voltage controlled phase circuit and 50%-duty circuit (P,AP,T) with 0/180° switch. The combination use of the ±100°-phase shifter and 0/180°-selector enables the output of 50%-duty square wave that phase is shifted in the 360° range to the phase shifter input signal. Double frequency is produced by the 50%-duty input signal if 2f mode is placed through the connection with the specified pin. CD-951V4 is in a static-shielded 20-pin single-inline package, which is a great contributor to the implementation of high precision signal processing and high density mounting.

ABSOLUTE MAXIMUM RATINGS

Supply voltage (Vs) ±18V
Phase control ±5V
DC input voltage ±5.5V, –100kΩ
Phase shifter input voltage ±5.5V, –100kΩ
Logic control voltage ±5.5V, –100kΩ

50%-duty output/voltage control phase shifter

Setting Pins 1, 17 shorted, Pins 15, 16 open
I/O characteristics 50%-duty square wave, which a phase is shifted by voltage control, is output with reference to the edge specified at polarity switch of phase shifter input signal waveform.

FREQUENCY RANGE

Frequency range 1kHz to 2MHz

Phase shifter input characteristics

Input circuit CMOS Schmitt trigger, pulled up at 100 kΩ
Trip point ±8.5V to ±1V (typ)
Input voltage CMOS (0±3.5V) level
Unipolar (1) mode A rising or falling edge is regarded as a reference.

Polarity switch Pin 13 open or +5V. Rising edge regarded as a reference. 0V: Falling edge regarded as a reference.

Pulse duration Min. 50ns

Bipolar(2) mode Both rising and falling edge are regarded as a reference.

Mode setting Connected with the phase shifter input (Pin 13) and polarity switch input (Pin 15).

input waveform Duty: 50%
input frequency range 1kHz to 1MHz

VOLTAGE CONTROL CHARACTERISTICS

Control method Phase shift is specified in the proportion to phase control DC input voltage.

Input resistance 100kΩ±3% (DC)
Linear maximum input voltage ±5V (±11MHz)
Linear control range ±90°
Voltage control sensitivity ±20°/V (±100V~+5V, 100V~+5V)
Sensitivity accuracy ±1.7V

PHASE SHIFTER

Logic control voltage

Input voltage

Phase shifter

DC input voltage

Phase control

SENSITIVITY ACCURACY

Voltage control sensitivity

LINEAR CONTROL RANGE

Frequency range 1kHz to 1MHz

Input frequency range

Input waveform

Duty: 50%

INPUT WAVEFORM

Duty: 50%

Output waveform

Duty: 50%

Output frequency range

Output waveform

Duty: 50%

Output frequency range

Output waveform

Duty: 50%

Output frequency range

Output waveform

Polarity switch

Pin 1, 17 shorted, Pins 15, 16 open

UNIPOLAR MODE

A rising or falling edge is regarded as a reference.

POLARITY SWITCH

Pin 13 open or +5V. Rising edge regarded as a reference. 0V: Falling edge regarded as a reference.

PULSE DURATION

Min. 50ns

BIPOLAR MODE

Both rising and falling edge are regarded as a reference.

MODE SETTING

Connected with the phase shifter input (Pin 13) and polarity switch input (Pin 15).

INPUT WAVEFORM

Duty: 50%

Output waveform

Duty: 50%

Output frequency range

Output waveform

Polarity switch

Pin 1, 17 shorted, Pins 15, 16 open

UNIPOLAR MODE

A rising or falling edge is regarded as a reference.

POLARITY SWITCH

Pin 13 open or +5V. Rising edge regarded as a reference. 0V: Falling edge regarded as a reference.

PULSE DURATION

Min. 50ns

BIPOLAR MODE

Both rising and falling edge are regarded as a reference.

MODE SETTING

Connected with the phase shifter input (Pin 13) and polarity switch input (Pin 15).

INPUT WAVEFORM

Duty: 50%

Output waveform

Duty: 50%

Output frequency range

Output waveform

Polarity switch

Pin 1, 17 shorted, Pins 15, 16 open

UNIPOLAR MODE

A rising or falling edge is regarded as a reference.

POLARITY SWITCH

Pin 13 open or +5V. Rising edge regarded as a reference. 0V: Falling edge regarded as a reference.

PULSE DURATION

Min. 50ns

BIPOLAR MODE

Both rising and falling edge are regarded as a reference.

MODE SETTING

Connected with the phase shifter input (Pin 13) and polarity switch input (Pin 15).

INPUT WAVEFORM

Duty: 50%

Output waveform

Duty: 50%

Output frequency range

Output waveform

Polarity switch

Pin 1, 17 shorted, Pins 15, 16 open

UNIPOLAR MODE

A rising or falling edge is regarded as a reference.

POLARITY SWITCH

Pin 13 open or +5V. Rising edge regarded as a reference. 0V: Falling edge regarded as a reference.

PULSE DURATION

Min. 50ns

BIPOLAR MODE

Both rising and falling edge are regarded as a reference.

MODE SETTING

Connected with the phase shifter input (Pin 13) and polarity switch input (Pin 15).

INPUT WAVEFORM

Duty: 50%
### Phase Detector

**Block diagram**

- **PHASE OFFSET**: This is used to cancel phase offset. Zero adjustment of the phase offset for CD-951V4 phase shifter only is enabled in the range of 1kHz to 200kHz. Both terminals of a trimmer potentiometer of 20kΩ min. are connected with ±5V input (Pins 5 and 6), and the center terminal is connected to the PHASE OFFSET terminal.

  - **200kHz**: This is used to switch the operating frequency range between 1kHz-200kHz and 10kHz-2MHz in response to the used frequency. HI: 1kHz to 200kHz (The pin is open) LO: 10kHz to 200MHz

- **NOR/INV**: This is used to switch the output phase between 0° and 180°. A 360°-phase shifter is configured in combination with a continuously variable phase shifter (±90°). HI: 0° (The pin is open) LO: 180°

- **DUTY50 IN POL**: This is used to switch the input polarity of the 50%-duty circuit. "HI" (open) should remain on for normal connection. HI: Rising edge regarded as a reference (specified when the pin is open) LO: Falling edge regarded as a reference

- **SHIFTER IN POL**: This is used to switch the reference polarity of shifter input. The operation at double frequency, as compared with the reference signal, is actualized through the connection between the SHIFTER IN POL terminal and SHIFTER IN terminal if 50% of duty is assigned to the reference signal. HI: Rising edge regarded as a reference (specified when the pin is open) LO: Falling edge regarded as a reference

  - **Connected with SHIFTER IN terminal**: Both rising and falling edge regarded as a reference

### Timing chart

This timing chart presents the operation of the voltage controlled phase shifter CD-951V4. E.g.: The CD-951V4 phase shifter is set to regard a rising edge of the input signal as a phase reference. This detector produces the signal "LO" (Pin 5) for the time proportionate to the control voltage (td) if a rise is observed in the input signal (Pin 4). Waveform shaping (Pin 8) is performed to assure 50% in duty (t1 = t2) with reference the rising edge in the obtained signal.

- **td adjustment**: allows continuous change in input/output rise time (tsft), which denotes phase change.

  - **The same operating principles**: are applied to the phase detector CD-552R3 that has realized 90°-phase shift with high accuracy.

  * Patent pending

### Usage example 2-phase detector

This example indicates the adoption of this detector to the 2-phase detector. The cos and sin detection outputs are obtained, which allows amplitude and phase of the synchronization signals to be derived from the relevant vector operation.

**GAIN setting**: Short: ×10

**Open**: ×1

**LPFfc setting (same as R21)**: Short: 1kHz

* Note: See the CD-552R3/R4 in Page 72 for details in the GAIN setting and LPF setting.
Characteristics

Phase offset

180° phase error

Duty error

Control voltage coefficient – Temperature

Phase offset - Temperature

180° phase error - Temperature

Duty error - Temperature

Control voltage coefficient – Temperature

Offset [deg]

Frequency [Hz]

Offset [deg]

Frequency [Hz]

Phase [deg]

Frequency [Hz]

Phase [deg]

Frequency [Hz]

Control voltage coefficient [deg/V]

Temperature [°C]

Temperature [°C]

Temperature [°C]

Temperature [°C]